Getting the most out of ASIC prototyping with FPGAs
By Darren Zacher, Mentor Graphics
February 07, 2007 -- pldesignline.com
Over the past 18 months, there has been a growing adoption of the use of FPGAs to prototype ASICs as part of an ASIC verification methodology. With the development costs for ASICs skyrocketing – a typical 90nm ASIC/SoC design tape-out today costs around $20M; a 90nm mask set alone costs over $1M; and total development cost for a 45nm SoC is expected to top $40M – it is clear to see why avoiding a respin by prototyping with FPGAs is attractive.
Besides the increase in mask set cost, total development cost is also increasing due to the reduced probability of getting the design right the first time. As design complexity continues to increase, surveys have shown that only about a third of today's SoC designs are bug-free in first silicon, and nearly half of all re-spins are reported as being caused by functional logic error. As a result, verification managers are now exploring ways to strengthen their functional verification methodologies.
With increased complexity, another cost becomes a limiting factor to the effectiveness of verification – simulation runtime and inaccuracy of stimulus models. Prototyping an ASIC design in FPGAs, while often yielding different performance, still results in the same logical functionality. Further, running a design at speed on an FPGA prototype with real stimulus allows for a far more exhaustive and realistic functional coverage as well as early integration with embedded software. Thus FPGA prototyping can be used effectively to supplement and extend existing functional verification methodologies.
When adopting an FPGA prototyping flow, there are a number of important issues a designer has to consider as follows:
- Partitioning the design across multiple FPGAs
- Translating ASIC primitives to FPGA logic cells
- Conversion of gated clocks
- Support for DesignWare libraries
- Coding for memory portability
- Support for ASIC constraint files
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- The Future of Embedded FPGAs - eFPGA: The Proof is in the Tape Out
- Last-Time Buy Notifications For Your ASICs? How To Make the Most of It
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Getting the most out of formal analysis
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS