FPGA Design: Faster Runtimes & Increased Productivity
Joe Mallet, Synopsys
EETimes (1/13/2016 04:40 PM EST)
In order to achieve accelerated FPGA development schedules, designers require the aid of sophisticated synthesis tools.
FPGA device density is continuing to grow at approximately 2x per node, which is -- not surprisingly -- driving larger, more complex designs. This means that FPGA designers face several challenges as follows:
- Longer run times due to increasing design size and complexity.
- Achieving rapid synthesis turn-around time to integrate design changes.
- Avoiding unnecessary resynthesizing of pre-verified, static modules, like IP blocks and completed modules.
In order to achieve accelerated FPGA development schedules, while supporting increasing design sizes and complexity, designers require the aid of sophisticated synthesis tools.
To read the full article, click here
Related Semiconductor IP
- Flexible Pixel Processor Video IP
- Complex Digital Up Converter
- Bluetooth Low Energy 6.0 Digital IP
- Verification IP for Ultra Ethernet (UEC)
- MIPI SWI3S Manager Core IP
Related White Papers
- Increased Verification Productivity through extensive Reuse
- A tutorial on tools, techniques, and methodology to improve FPGA designer productivity
- Medical imaging process accelerated in FPGA 82X faster than software
- Achieving Better Productivity with Faster Synthesis
Latest White Papers
- RISC-V basics: The truth about custom extensions
- Unlocking the Power of Digital Twins in ASICs with Adaptable eFPGA Hardware
- Security Enclave Architecture for Heterogeneous Security Primitives for Supply-Chain Attacks
- relOBI: A Reliable Low-latency Interconnect for Tightly-Coupled On-chip Communication
- Enabling Space-Grade AI/ML with RISC-V: A Fully European Stack for Autonomous Missions