"Early and accurate" power analysis: myth or reality?
By Preeti Gupta, Director RTL Product Management, Apache Design, Inc. (a subsidiary of ANSYS)
EETimes (4/11/2012 6:43 PM EDT)
Power is receiving a mounting share of attention. Innovation, fueled by the information and internet age, poses new challenges for electronic systems across a spectrum of applications. Mobile devices continue to break new frontiers of functional integration. Phones are now your email, social networking interface, video and music player, gaming device, camera, GPS, and more – all rolled into one. Yet the smart phone must survive through the day, and hopefully longer, without having to recharge the battery. Data centers and cloud computing grapple with power and carbon footprints as they move and process incredible amounts of data back and forth, consuming electricity to the order of 1-2% of the total that the entire world consumes. Advances in fabrication technology have made it possible for processors and system-on-chips (SoCs) to boast of over three-billion transistors, also pushing the limits of power density, integrity and reliability.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Throttle IP Core Power Dissipation: Use RTL Power Analysis Early and Often
- Low Power Analysis and Verification of Super Speed Inter-Chip (SSIC) IP
- Accurate and Efficient Power estimation Flow For Complex SoCs
- Estimate power at RTL to identify problems early
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS