Estimate power at RTL to identify problems early
Aniruddha Gupta & Himani Grover (Freescale)
EDN (August 05, 2015)
SoC power consumption is a key differentiating feature. The initial estimated power of the design is often less than the power use seen on silicon. This happens because there is no power estimation flow available that can accurately correlate power estimation results with the silicon results. Also, for parts that involves a lot of new design features & IP blocks, the exact gate count details are difficult to predict early in the flow.
In addition to more accurate power-estimation flow, there is a need for RTL-stage power estimation, offering the opportunity to reduce power early in the design. This paper discusses the basics of power estimation, and a power-estimation flow at RTL level, which should be known to everyone designing IP & SoCs.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Throttle IP Core Power Dissipation: Use RTL Power Analysis Early and Often
- Static Checks for Power Management at RTL
- Arrgghh! My FPGA's not working: Problems with the RTL
- Power analysis of clock gating at RTL
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS