Estimate power at RTL to identify problems early
Aniruddha Gupta & Himani Grover (Freescale)
EDN (August 05, 2015)
SoC power consumption is a key differentiating feature. The initial estimated power of the design is often less than the power use seen on silicon. This happens because there is no power estimation flow available that can accurately correlate power estimation results with the silicon results. Also, for parts that involves a lot of new design features & IP blocks, the exact gate count details are difficult to predict early in the flow.
In addition to more accurate power-estimation flow, there is a need for RTL-stage power estimation, offering the opportunity to reduce power early in the design. This paper discusses the basics of power estimation, and a power-estimation flow at RTL level, which should be known to everyone designing IP & SoCs.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Throttle IP Core Power Dissipation: Use RTL Power Analysis Early and Often
- Static Checks for Power Management at RTL
- Arrgghh! My FPGA's not working: Problems with the RTL
- Power analysis of clock gating at RTL
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models