Overcoming the challenges of formal verification and debug
Vennsa Technologies Inc.
ETTimes (5/18/2011 9:08 AM EDT)
It is well known that verification is a major time and effort drain in today’s design process. For some time now, advocates of formal verification and property checking have promoted this technology as the timely solution to the ballooning verification pain. Indeed, the arguments are compelling: there is no need to develop a standalone testbench or to generate stimulus to cover corner cases, and once a property passes it is 100 percent correct. All one needs to achieve these benefits is to write a set of properties and run a property checker to prove or disprove the compliance of these properties by the design. For these reasons in the early to mid 2000s EDA companies large and small dedicated much effort and money to develop and capture a segment of this new market.
Over the years that followed, as many companies and engineers learned through firsthand experience, there are some major obstacles to overcome to make the formal verification argument a reality in practice. In my view, there are two main challenges (1) writing assertions is complicated, (2) debugging property failures can be significantly more difficult than that of a human developed testbenches.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- The pitfalls of mixing formal and simulation: Where trouble starts
- Importance of VLSI Design Verification and its Methodologies
- Bigger Chips, More IPs, and Mounting Challenges in Addressing the Growing Complexity of SoC Design
- A new era of chip-level DRC debug: Fast, scalable and AI-driven
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS