C-based coprocessor design, part 1: SIMD architecture
By V. A. Chouliaras, Loughborough University, and Chad Spackman, CTO, CebaTech Inc.
Programmable architectures, including micro-coded data-parallel accelerators, are the backbone processing engines in high performance ASICs. Traditionally, such architectures have been implemented at register transfer level (RTL), as this level of abstraction is sufficiently close to the actual hardware architecture and is fully supported by the mainstream ASIC and FPGA synthesis flows.
With the introduction of disruptive electronic system level (ESL) synthesis tools such as CebaTech Inc.'s C2R Compiler, large scale accelerators can be described at a higher abstraction level. At the same time, the processor architect maintains full control over the ESL synthesis process by using advanced features such as precise interface inference, user-specified clocking, explicit data (DLP) level and thread (TLP) level parallelism as well as combinatorial logic.
This article elaborates on the use of the C2R compiler for implementing a 2-way LIW/SIMD hybrid accelerator, attached to a scalar processor core, with configurable micro-architecture and programmer's model/ISA. The accelerator was designed for the ITU-T G723.1 and G729.A speech coding standards.
Programmable architectures, including micro-coded data-parallel accelerators, are the backbone processing engines in high performance ASICs. Traditionally, such architectures have been implemented at register transfer level (RTL), as this level of abstraction is sufficiently close to the actual hardware architecture and is fully supported by the mainstream ASIC and FPGA synthesis flows.
With the introduction of disruptive electronic system level (ESL) synthesis tools such as CebaTech Inc.'s C2R Compiler, large scale accelerators can be described at a higher abstraction level. At the same time, the processor architect maintains full control over the ESL synthesis process by using advanced features such as precise interface inference, user-specified clocking, explicit data (DLP) level and thread (TLP) level parallelism as well as combinatorial logic.
This article elaborates on the use of the C2R compiler for implementing a 2-way LIW/SIMD hybrid accelerator, attached to a scalar processor core, with configurable micro-architecture and programmer's model/ISA. The accelerator was designed for the ITU-T G723.1 and G729.A speech coding standards.
To read the full article, click here
Related Semiconductor IP
- JESD204E Controller IP
- eUSB2V2.0 Controller + PHY IP
- I/O Library with LVDS in SkyWater 90nm
- 50G PON LDPC Encoder/Decoder
- UALink Controller
Related Articles
- Achieving 200-400GE network buffer speeds with a serial-memory coprocessor architecture
- Digital Associative Memories Based on Hamming Distance and Scalable Multi-Chip Architecture
- C based design methodology accelerates ASIC/FPGA design cycles
- An HDTV SoC Based on a Mixed Circuit-Switched / NoC Interconnect Architecture (STBus/VSTNoC)
Latest Articles
- Crypto-RV: High-Efficiency FPGA-Based RISC-V Cryptographic Co-Processor for IoT Security
- In-Pipeline Integration of Digital In-Memory-Computing into RISC-V Vector Architecture to Accelerate Deep Learning
- QMC: Efficient SLM Edge Inference via Outlier-Aware Quantization and Emergent Memories Co-Design
- ChipBench: A Next-Step Benchmark for Evaluating LLM Performance in AI-Aided Chip Design
- COVERT: Trojan Detection in COTS Hardware via Statistical Activation of Microarchitectural Events