The industry needs a renewed approach to verification IP
Dhrubajyoti Kalita, Intel
EETimes (2/21/2012 10:38 AM EST)
Today’s SoC verification environments require a reusable verification IP (VIP) infrastructure that allows plug-and-play of verification IP in SoC integration. The VIP must include hooks in the verification IP that would make writing an SoC integration test environment (tests, BFMs, monitors, checkers) easier and faster. Typically, SoC verification methodologies focus on verifying only the glue logic of the reused IP, rather than verifying IP functionality in the SoC environment.
The current verification IP landscape comprises multiple implementation languages: C, C++, SystemC, VHDL, Verilog, SystemVerilog, ‘e’, OpenVera, etc. Although SystemVerilog is the unifying standard, legacy use of other languages lingers as IP vendors adopt SystemVerilog. Every VIP brings unique challenges to integration with the SoC environment, such as synchronizing SystemVerilog test sequences with SystemC/C/C++ code. The solution is often VIP specific and takes significant effort to implement. Moreover, because SoC verification environments need to stitch all the heterogeneous VIPs together, which is often a painful process, maintaining the SoC environment is resource intensive as well.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- MIPI D-PHY and FPD-Link (LVDS) Combinational Transmitter for TSMC 22nm ULP
- VIP for Compute Express Link (CXL)
- HBM4 Controller IP
Related Articles
- Low Power Analysis and Verification of Super Speed Inter-Chip (SSIC) IP
- Challenges and Benefits of Low Power Design Verification with CPF for a standalone IP
- The 7 levels of IP verification
- Analog IP verification guidelines
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor