The Age of the Monster Chip
By K. Charles Janac, President and CEO, Arteris IP
EETimes (September 17, 2019)
What are the system designs that require a leap in SoC complexity? It's not only big datacenter artificial intelligence (AI) chips, but also autonomous vehicles such as cars, trucks and drones; they are self-landing, reusable rockets; they are medical devices carrying out remote diagnostics.
The complexity of many System-on-Chip (SoC) designs is simply staggering. As an example, this year’s HotChips symposium showcased a variety of new SoC designs for the edge and datacenter that expand our definition of a “big” chip. What are the system designs that require a leap in SoC complexity? It’s not only big datacenter artificial intelligence (AI) chips, but also autonomous vehicles such as cars, trucks and drones; they are self-landing, reusable rockets; they are medical devices carrying out remote diagnostics; and they are connected machine tool controllers supporting smart manufacturing.
These chips are starting to be referred to as “Monster Chips” because of both the size and complexity. Now, let us look at the factors behind the rise of these monster chip designs. The main reason is the exploitation of the Internet connectivity that not only provides big data information but also distributed processing that helps make decisions. These Internet-connected systems need to make some or all decisions on their own by processing more than one trillion operations per second, and this drives new hardware and software innovations as well as dramatically increased complexity.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- The Future Of Chip Design
- An Outline of the Semiconductor Chip Design Flow
- At the edge of data processing
- Solving the problem of growing ASIC respins
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience