Revolutionizing High-Voltage Controller Chips for Electric Vehicles
By NOVOSENSE Microelectronics
EETimes (November 27, 2023)
New Energy Vehicles require high-voltage controller chips
In the early times, most of the vehicle’s circuits were simple, containing a few essential circuits such as lighting, wiper, etc. Over time, the vehicle’s circuits got updated, increasing complexity.
With new trends such as electrification and autonomous driving, today’s vehicle is a mix of continually evolving subsystems that often have different electronic and electrical components —sometimes up to 100 or more.
The electrification of the automotive industry is rapidly advancing, driven mainly by policy. Industry stakeholders face enormous challenges, resembling the early days of the automobile.
Until the arrival of plug-in and fully electric vehicles, a car’s electrical system was a bit like the body’s circulatory system, where low-voltage comes from the battery, flowing along the wires to the parts that require it before returning to the battery.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related White Papers
- Implementation basics for autonomous driving vehicles
- Floorplan Guidelines for Sub-Micron Technology Node for Networking Chips
- Why Interlaken is a great choice for architecting chip to chip communications in AI chips
- Integrating Ethernet, PCIe, And UCIe For Enhanced Bandwidth And Scalability For AI/HPC Chips
Latest White Papers
- What tamper detection IP brings to SoC designs
- Analyzing Modern NVIDIA GPU cores
- RISC-V in 2025: Progress, Challenges,and What’s Next for Automotive & OpenHardware
- Leveraging RISC-V as a Unified, Heterogeneous Platform for Next-Gen AI Chips
- Design and implementation of a hardened cryptographic coprocessor for a RISC-V 128-bit core