Platform-based design: Blocks and buses lead the way
By Gabe Moretti, Technical Editor -- 8/21/2003
EDN
Engineers deal with complex systems by dividing them into subsystems, almost always using functions as the deciding criterion. When you look at a complex ASIC, for example, you see a number of functional blocks connected by buses. Depending on the application market the ASIC is targeting, many of the blocks are common or have functions in common with other products targeting the same market, regardless of the company and design team that implemented it. A chip that targets a graphics application, for example, is likely to contain a graphics-accelerator engine, a graphics memory to buffer display data, a microcontroller, and memory for software that controls the operation of the system. Semiconductor companies and fabless foundries have developed many products with architectures that target popular application areas, such as graphics acceleration and both wired and wireless communications. Vendors market these products under the category name of ASSPs (application-specific standard products). Products in this area generally offer no way to customize the application within the chip. You must implement your functions using components outside the device.
Click here to read more ....
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- Semiconductors and software lead the way to sustainability
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- AI, and the Real Capacity Crisis in Chip Design
- How to Elevate RRAM and MRAM Design Experience to the Next Level
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models