Partitioning to optimize AI inference for multi-core platforms
By Rami Drucker, Ceva
EDN (January 8, 2024)
Not so long ago, artificial intelligence (AI) inference at the edge was a novelty easily supported by a single neural processing unit (NPU) IP accelerator embedded in the edge device. Expectations have accelerated rapidly since then. Now we want embedded AI inference to handle multiple cameras, complex scene segmentation, voice recognition with intelligent noise suppression, fusion between multiple sensors, and now very large and complex generative AI models.
Such applications can deliver acceptable throughput for edge products only when run on multi-core AI processors. NPU IP accelerators are already available to meet this need, extending to eight or more parallel cores and able to handle multiple inference tasks in parallel. But how should you partition expected AI inference workloads for your product to take maximum advantage of all that horsepower?
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- AI Edge Inference is Totally Different to Data Center
- The Expanding Markets for Edge AI Inference
- Why Interlaken is a great choice for architecting chip to chip communications in AI chips
- The Growing Importance of AI Inference and the Implications for Memory Technology
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference