Optimizing compilers for ADAS applications
Alexander Herz, TASKING
EDN (March 06, 2017)
All major OEMs and software suppliers of the automotive industry are committed to advanced driver assistance systems (ADAS). A close look, though, raises questions on the demands ADAS applications place on compilers and toolsets. There are differences between traditional automotive applications and ADAS, and current compliers need some adaptations to better address ADAS needs.
ADAS applications as a challenge
To better support the task of driving autonomously, vehicles need to be much more aware of their surroundings. Several new sensors (Radar, Lidar, cameras, etc.) can be used to detect road markings, other vehicles, obstacles, and other relevant environmental data with high resolution (Fig. 1). In the past, it was common practice for automotive systems to process only individual measurements from specific actuators (steering angle, pedal positions, various engine sensors, etc.) in real time.
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Paving the way for the next generation audio codec for True Wireless Stereo (TWS) applications - PART 3 : Optimizing latency key factor
- MACsec for Deterministic Ethernet applications
- Driving ADAS Applications with MIPI CSI-2
- Selection of FPGAs and GPUs for AI Based Applications
Latest White Papers
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor