Minimize leakage power in embedded SoC designs with Multi-Vt cells
Abhishek Mahajan and Sorabh Sachdeva, Freescale Semiconductor
EETimes (8/6/2011 5:03 PM EDT)
The authors describe the use of a multithreshold voltage (Multi-Vt) flow technique that does not require embedded SoC architecture changes and allows a designer to decide when to use Low-Vt cells, which have better timing but higher leakage power, and when to use High-Vt cells which have lower leakage but worse timing.
Minimizing leakage power in systems-on-chip (SoCs) has become a major priority for designers because it increases drastically in submicron process technologies, becoming a major proportion of power usage. There are various design techniques to optimize dynamic power, such as power gating and dynamic voltage and frequency scaling (DVFS), but these require architectural changes that add to chip complexity, which you want to avoid in SoCs. Multiple voltage threshold (Multi-Vt) flow is the only technique that doesn’t require changes to the SoC architecture; it depends instead on how judiciously the designer uses Low-Vt cells. Low-Vt cells have better timing but higher leakage power; High-Vt cells have lower leakage but worse timing.
To minimize leakage power, Multi-Vt cells are used during the logical synthesis stage of the design (Figure 1 below). Since High-Vt cells have more delays, these cells are used where timing is relaxed, whereas Std-Vt and Low-Vt cells are used at timing-critical places. The expectation is always to meet timing with optimal area and power. The important point here is that priority is still given to timing as logic synthesis is done at the worst process voltage temperature (PVT), i.e. WCS-HOT (worst case timing at maximum temperature), where delay of the cells is maximum. (In Figure 1 RTL refers to register transfer level).
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- Achieving Your Low Power Goals with Synopsys Ultra Low Leakage IO
- Leakage power optimization for 28nm and beyond
- How to power FPGAs with Digital Power Modules
- Optimizing LPDDR4 Performance and Power with Multi-Channel Architectures
Latest White Papers
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management
- Seven Key Advantages of Implementing eFPGA with Soft IP vs. Hard IP
- Hardware vs. Software Implementation of Warp-Level Features in Vortex RISC-V GPU