Inside the Xilinx Kintex-7 FPGA: A closer look at the first FPGA to use HKMG technology
Kevin Gibb
4/5/2012 1:59 PM EDT
A closer look at the Kintex-7 FPGA
TMSC's HPL NMOS and PMOS transistors, as seen in the Kintex-7 FPGA, are shown below. The two transistors are made using a gate-last process, where the TiN/HfO2/oxide gate dielectric is first deposited, followed by the deposition, patterning and etching of the sacrificial polysilicon gates. Silicon nitride sidewall spacers are then formed along the sides of the gates and are used to define the source/drain regions.
The sacrificial polysilicon gates are then removed and different gate metals are deposited into the NMOS and PMOS gate regions. The bottom portions of the metal gates include the work function metals, TiAlN for the NMOS and TiN for the PMOS transistors, as can be seen in the TEM images.
And perhaps as a nod to cost savings, TSMC has eschewed strain engineering to boost the transistors’ performance. Instead, rotated wafers are used that place the transistor channels in a <100> orientation to boost the PMOS drive current. This avoids the need for embedded SiGe PMOS source/drain regions used by Intel (and by TMSC’s HP) process. (Note: The <100> refers to a direction in the silicon lattice, in this case the direction of the current flow through the channel of the transistor.)
To read the full article, click here
Related Semiconductor IP
- Xilinx Kintex 7 NVME HOST IP
- Xilinx ZYNQ NVME HOST IP
- Xilinx UltraScale Plus NVME Hhost IP
- Xilinx Ultra Scale NVME Host IP
- Xilinx Ultra Scale Plus SATA HOST IP
Related White Papers
- Developing FPGA applications for Edition 2 of the IEC 61508 Safety Standard
- Inside 802.11e: Making QoS a Reality over WLAN Connections
- A look inside electronic system level (ESL) design
- Inside the HyperTransport 2.0 Interface
Latest White Papers
- Monolithic 3D FPGAs Utilizing Back-End-of-Line Configuration Memories
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard