Inside the Xilinx Kintex-7 FPGA: A closer look at the first FPGA to use HKMG technology
Kevin Gibb
4/5/2012 1:59 PM EDT
A closer look at the Kintex-7 FPGA
TMSC's HPL NMOS and PMOS transistors, as seen in the Kintex-7 FPGA, are shown below. The two transistors are made using a gate-last process, where the TiN/HfO2/oxide gate dielectric is first deposited, followed by the deposition, patterning and etching of the sacrificial polysilicon gates. Silicon nitride sidewall spacers are then formed along the sides of the gates and are used to define the source/drain regions.
The sacrificial polysilicon gates are then removed and different gate metals are deposited into the NMOS and PMOS gate regions. The bottom portions of the metal gates include the work function metals, TiAlN for the NMOS and TiN for the PMOS transistors, as can be seen in the TEM images.
And perhaps as a nod to cost savings, TSMC has eschewed strain engineering to boost the transistors’ performance. Instead, rotated wafers are used that place the transistor channels in a <100> orientation to boost the PMOS drive current. This avoids the need for embedded SiGe PMOS source/drain regions used by Intel (and by TMSC’s HP) process. (Note: The <100> refers to a direction in the silicon lattice, in this case the direction of the current flow through the channel of the transistor.)
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- UCIe Controller baseline for Streaming Protocols for ASIL B Compliant, AEC-Q100 Grade 2
Related White Papers
- How to tackle serial backplane challenges with high-performance FPGA designs
- How to get more performance in 65 nm FPGA designs
- How to maximize FPGA performance
- How to design 65nm FPGA DDR2 memory interfaces for signal integrity
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models