Improving performance and security in IoT wearables
By Pritesh Mandaliya, Cypress Semiconductor
Many IoT applications – including connected cars, factory automation, smart city, connected health, and wearables – require nonvolatile memory to store data and code. Traditionally, embedded applications have used external Flash memory for this purpose.
However, as modern semiconductor technology faces challenges in scaling and cost as it moves to smaller geometries, it has become increasingly difficult to embed Flash memory within the host SoC. Therefore, future MCU or SoC designs are targeting system-in-package (SiP) or the use of external Flash. This trend does not address the needs of IoT applications like wearables because of their small form factor, strict cost constraints, and low-power related requirements.
To address these issues, Flash memory manufacturers are developing architectures that optimize size and power consumption. At the same time, they are introducing important new capabilities that support greater endurance, reliability, security, and safety.
Related Semiconductor IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
- High Speed Ethernet 2/4/8-Lane 200G/400G PCS
Related White Papers
- Basics of SRAM PUF and how to deploy it for IoT security
- How to achieve better IoT security in Wi-Fi modules
- IoT Security: Exploring Risks and Countermeasures Across Industries
- A new approach to improving system performance
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference