How to exploit 17 tried and true DSP power optimization techniques for wireless applications

Code size, speed and power consumption all have a significant impact on the the system-level product that integrates a DSP. The more power an embedded application consumes, for example, the larger the battery or fan required to drive it.
To reduce power, an application must run in as few cycles as possible because each cycle consumes a measurable amount of energy. In this sense, performance and power optimization are similar�using the least number of cycles is an excellent way to meet both performance and power optimization goals.
Although performance and power optimization strategies may share a similar goal, there are subtle differences in how those goals are achieved. This article will explore those differences from the perspective of wireless system design and it will discuss the resulting strategies.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- How Low Can You Go? Pushing the Limits of Transistors - Deep Low Voltage Enablement of Embedded Memories and Logic Libraries to Achieve Extreme Low Power
- Compiler optimization for DSP applications
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models