How to exploit 17 tried and true DSP power optimization techniques for wireless applications

Code size, speed and power consumption all have a significant impact on the the system-level product that integrates a DSP. The more power an embedded application consumes, for example, the larger the battery or fan required to drive it.
To reduce power, an application must run in as few cycles as possible because each cycle consumes a measurable amount of energy. In this sense, performance and power optimization are similar�using the least number of cycles is an excellent way to meet both performance and power optimization goals.
Although performance and power optimization strategies may share a similar goal, there are subtle differences in how those goals are achieved. This article will explore those differences from the perspective of wireless system design and it will discuss the resulting strategies.
To read the full article, click here
Related Semiconductor IP
- CXL 3 Controller IP
- PCIe GEN6 PHY IP
- FPGA Proven PCIe Gen6 Controller IP
- Real-Time Microcontroller - Ultra-low latency control loops for real-time computing
- AI inference engine for real-time edge intelligence
Related White Papers
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Paving the way for the next generation audio codec for True Wireless Stereo (TWS) applications - PART 3 : Optimizing latency key factor
- Paving the way for the next generation audio codec for TRUE Wireless Stereo (TWS) applications - PART 4 : Achieving the ultimate audio experience
Latest White Papers
- Adaptable Hardware with Unlimited Flexibility for ASIC & SoC ICs
- CAST Provides a Functional Safety RISC-V Processor IP for Microchip FPGAs
- Design and Implementation of Test Infrastructure for Higher Parallel Wafer Level Testing of System-on-Chip
- Soft Tiling RISC-V Processor Clusters Speed Design and Reduce Risk
- 8051s in Modern Systems: Interfacing to AMBA Buses