High-Reliability FPGA Designs
Joe Mallett, Synopsys
10/15/2014 11:40 AM EDT
Over the past few years, the need for high-reliability and high-availability systems has expanded past military and aerospace into the datacenter, onto the industrial floor, and into medical devices. This challenges FPGA developers to build highly reliable systems to address the growing market needs. There are several special design techniques that can be used to detect in-system errors and recover to correct operation.
Soft errors
With increasing integration of electronics for things like engine control, braking systems, and collision avoidance in automobiles, there is little-to-no margin for soft errors that could result in harm to humans. There are other applications that may not endanger lives, but still require safe operation, like medical equipment, industrial control, and high-availability communications equipment that could be very costly when a system fails. The challenge is that all electronic equipment can be affected by radiation-induced "glitches," advanced process technologies, and complex system implementation.
Today, many FPGAs are used to implement critical functions in electronic systems, and, as a result, it is critical to make sure they operate correctly and reliably. Radiation in the atmosphere can cause unstable conditions that result in an unwanted transient signal in the combinatorial logic of an FPGA. If this transient -- known as a single event upset (SEU) -- is propagated throughout the system, it could potentially cause a failure.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- General Partitioning Guidelines for Validation of Large ASIC Designs On FPGA
- Creating highly reliable FPGA designs
- Implementing PCI Express Designs using FPGAs
- ARM11 MPCore Provides Existing Software Portability Across Single- CPU and Multi-CPU Designs
Latest White Papers
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard
- Open-Source Design of Heterogeneous SoCs for AI Acceleration: the PULP Platform Experience