High-performance hardware models for system simulation
Chris Eddington - Synopsys
12/11/2012 11:37 AM EST
Introduction
System simulators are becoming an increasingly important part of the FPGA and ASIC verification process, particularly for system-on-chips (SoCs) with performance-critical hardware accelerators and tightly-coupled embedded software. Cycle accuracy (CA) of the peripheral hardware is often a requirement or very desirable in many cases, especially if greater simulation performance over RTL simulation can be achieved. Some examples include:
- Detailed performance and utilization of system interconnect, based on the actual hardware implementation running with its embedded software.
- Implementation of low-level drivers and firmware, which require register maps and may rely on exact latency and flow control behavior of the peripheral.
- Software optimization, which can be particularly important for algorithm hardware accelerators, codec development, as well as in cases where hardware and software are tightly coupled and there is a critical overall performance goal in latency, throughput, etc. In such scenarios, estimates by ISS and TLM can be off by a factor of three, resulting either in wasted silicon or chips that cannot meet their required performance.
To read the full article, click here
Related Semiconductor IP
- MIPI SoundWire I3S Peripheral IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
Related White Papers
- Reusable Device Simulation Models for Embedded System Virtual Platforms
- HW/SW Interface Generation Flow Based on Abstract Models of System Applications and Hardware Architectures
- CANDoSA: A Hardware Performance Counter-Based Intrusion Detection System for DoS Attacks on Automotive CAN bus
- Verifying large models in RTL simulation
Latest White Papers
- Attack on a PUF-based Secure Binary Neural Network
- BBOPlace-Bench: Benchmarking Black-Box Optimization for Chip Placement
- FD-SOI: A Cyber-Resilient Substrate Against Laser Fault Injection—The Future Platform for Secure Automotive Electronics
- In-DRAM True Random Number Generation Using Simultaneous Multiple-Row Activation: An Experimental Study of Real DRAM Chips
- SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference