Tips and Tricks: Using FPGAs in reliable automotive system design
automotivedesignline.com (January 15, 2009)
For FPGAs to be part of an ultra-reliable design, designers must protect the valid FPGA configuration used for initialization and prevent SRAM corruption during device operation
The increased use of complex automotive electronics systems requires that they be designed for "ultra-reliability," because the failure of an automotive system could place the vehicle's passengers in a life-threatening situation. System designers are considering the use of Field Programmable Gate Arrays (FPGAs) more frequently in these systems, due to the FPGA's ability to integrate and perform complex functions.
However, there are two primary concerns regarding the use of FPGAs in automotive systems: The need to protect the valid FPGA configuration used for initialization, and prevention of SRAM corruption during device operation. Unless these concerns are fully addressed, FPGAs cannot be part of an ultra-reliable automotive system design.
Fortunately, current AEC-Q100 qualified FPGAs incorporate several advanced features that resolve these concerns. This article will highlight several solutions that address both the initialization configuration and potential SRAM corruption issues.
To read the full article, click here
Related Semiconductor IP
- MIPI D-PHY RX+ (Receiver) IP
- MIPI D-PHY TX+ (Transmitter)
- LVDS Deserializer IP
- LVDS Serializer IP
- MIPI D-PHY/LVDS Combo Receiver IP
Related White Papers
- Designing FPGA Based Reliable Systems Using Virtex-5 System Monitor
- FPGA based Complex System Designs: Methodology and Techniques
- A 24 Processors System on Chip FPGA Design with Network on Chip
- Creating highly reliable FPGA designs
Latest White Papers
- DisplayPort 2025: Navigating the Next Wave of Display Innovation
- Efficient Magnetization Switching via Orbital-to-Spin Conversion in Cr/W-Based Heterostructures
- Real-Time ESD Monitoring and Control in Semiconductor Manufacturing Environments With Silicon Chip of ESD Event Detection
- Benchmarking Ultra-Low-Power 𝜇NPUs
- Density Management in Analog Layout Design: Addressing Issues and Ensuring Consistency