Using FPGAs in Mobile Heterogeneous Computing Architectures
Abdullah Raouf, Lattice Semiconductor
EETimes (1/13/2017 05:40 PM EST)
Since "context-aware" systems must be "always on" to track changes in the environment, these capabilities represent a potentially significant drain on system power.
Today's mobile systems are more intelligent than ever. As users demand more functionality, designers are continually adding to a growing list of embedded sensors. Image sensors support functions such as gesture and facial recognition, eye tracking, proximity, depth, and movement perception. Health sensors monitor the user's EKG, EEG, EMG, and temperature. Audio sensors add voice recognition, phrase detection, and location-sensing services.
Many of these same devices now offer "context-aware" subsystems that allow the system to initiate highly advanced, task-enhancing decisions without prompting the user. For example, temperature, chemical, infrared, and pressure sensors can evaluate safety risks and track a user's health in dangerous environments. Precision image sensors and ambient light sensors can boost image resolution and display readability automatically as environmental conditions change.
Related Semiconductor IP
- CRYSTALS Dilithium core for accelerating NIST FIPS 204 Module Lattice Digital Signature algorithm
- Lattice Mico8 Open, Free Soft Microcontroller
- LatticeMico32 Open, Free 32-Bit Soft Processor
Related White Papers
- ARM Mali-T604 tips mobile graphics, computing, and IP trends
- Developing a heterogeneous multicore SoC for use in a mobile environment
- Hardware Acceleration for Embedded Computing
- Who Cares About Quantum Computing?
Latest White Papers
- New Realities Demand a New Approach to System Verification and Validation
- How silicon and circuit optimizations help FPGAs offer lower size, power and cost in video bridging applications
- Sustainable Hardware Specialization
- PCIe IP With Enhanced Security For The Automotive Market
- Top 5 Reasons why CPU is the Best Processor for AI Inference