Why FIR sensing technology is essential for achieving fully autonomous vehicles
Yakov Shaharabani, AdaSky
embedded.com (June 12, 2018)
The automotive industry is experiencing an influx of new technology as it never has before. Automakers are promising to deploy fully autonomous vehicles on public roads within the next few years and are predicting that mass market adoption will not be far behind. But while top-tier automakers and tech companies are eager to accelerate these autonomous innovations, achieving full vehicle autonomy will require a sensing technology that enable cars to “see” the world around them and react better than human drivers.
Current sensing technologies, like LiDAR, radar, and cameras, have perception problems that require a human driver to be ready to take control of the car at any moment. For this reason, the role of sensors has only intensified; to achieve Level 3-5 autonomous driving, vehicles need sensors both in greater quantity and of greater ability. This article explores the sensing capabilities of current solutions, such as radar and LiDAR (light detection and ranging), and why FIR (far-infrared) in a fusion solution is ultimately the key to achieving Level-3, 4, and 5 autonomous driving.
To read the full article, click here
Related Semiconductor IP
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
- PUF FPGA-Xilinx Premium with key wrap
- ASIL-B Ready PUF Hardware Premium with key wrap and certification support
- ASIL-B Ready PUF Hardware Base
- PUF Software Premium with key wrap and certification support
Related White Papers
- Inside the Xilinx Kintex-7 FPGA: A closer look at the first FPGA to use HKMG technology
- CE-ATA: Consumer Electronics Storage Technology Introduction and Hardware Design Challenges
- Fault-robust microcontrollers allow automotive technology convergence: Part 1, the nature of faults
- A Platform-Based Technology for Fault-Robust SoC Design
Latest White Papers
- Customizing a Large Language Model for VHDL Design of High-Performance Microprocessors
- CFET Beyond 3 nm: SRAM Reliability under Design-Time and Run-Time Variability
- Boosting RISC-V SoC performance for AI and ML applications
- e-GPU: An Open-Source and Configurable RISC-V Graphic Processing Unit for TinyAI Applications
- How to design secure SoCs, Part II: Key Management