Estimate power at RTL to identify problems early
Aniruddha Gupta & Himani Grover (Freescale)
EDN (August 05, 2015)
SoC power consumption is a key differentiating feature. The initial estimated power of the design is often less than the power use seen on silicon. This happens because there is no power estimation flow available that can accurately correlate power estimation results with the silicon results. Also, for parts that involves a lot of new design features & IP blocks, the exact gate count details are difficult to predict early in the flow.
In addition to more accurate power-estimation flow, there is a need for RTL-stage power estimation, offering the opportunity to reduce power early in the design. This paper discusses the basics of power estimation, and a power-estimation flow at RTL level, which should be known to everyone designing IP & SoCs.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
Related White Papers
- Throttle IP Core Power Dissipation: Use RTL Power Analysis Early and Often
- Static Checks for Power Management at RTL
- Arrgghh! My FPGA's not working: Problems with the RTL
- Power analysis of clock gating at RTL
Latest White Papers
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs