Choosing an effective embedded SoC ASIC design strategy
Sunit Bansal, Freescale Semiconductor Inc.
EETimes (12/13/2010 8:18 PM EST)
In large and complex system-0n-chip ASIC design, two of the most challenging tasks are those involving design closure, timing routing and power.
It is a tedious task to converge on timing and routing, owing to the limitations of design size and the memory-intensive calculations. Essentially, it is dependent on the design size that an EDA tool can handle.
In such cases, it is advisable to go for a hierarchical approach instead of a flat top. Generally, the blocks are demarcated on the basis of functionality, backward compatibility, third party IP etc.
This article details the difference in terms of runtimes, routing congestion, timing summary and utilization for a design that is done as hierarchical vs. the same design using the flat approach.
To read the full article, click here
Related Semiconductor IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
- Parameterizable compact BCH codec
- 1G BASE-T Ethernet Verification IP
- Network-on-Chip (NoC)
- Microsecond Channel (MSC/MSC-Plus) Controller
Related Articles
- Optimize SoC Design with a Network-on-Chip Strategy
- FPGA to ASIC Strategy for Communication SoC Designs
- An Efficient Device for Forward Collision Warning Using Low Cost Stereo Camera & Embedded SoC
- A Heuristic Approach to Fix Design Rule Check (DRC) Violations in ASIC Designs @7nm FinFET Technology
Latest Articles
- Leveraging FPGAs for Homomorphic Matrix-Vector Multiplication in Oblivious Message Retrieval
- Extending and Accelerating Inner Product Masking with Fault Detection via Instruction Set Extension
- ioPUF+: A PUF Based on I/O Pull-Up/Down Resistors for Secret Key Generation in IoT Nodes
- In-Situ Encryption of Single-Transistor Nonvolatile Memories without Density Loss
- David vs. Goliath: Can Small Models Win Big with Agentic AI in Hardware Design?