Dual core architectures in automotive SoCs
Amit Goel & Ankur Sharma, Freescale Semiconductor
EETimes, 8/23/2010 2:17 PM EDT
Automotive SoCs have traditionally been single core, since not much computational work or high end applications were targeted on them. Automotives were simpler, so were the applications and so were the SoCs. As more and more electronics made room in the automotives, the complexity of the SoCs kept on increasing. Now the focus is to have most of the automotive under electronic control.
High end automotives produced these days provide features like electronic stability control (ESC), traction control system (TCS), advanced driver assistance systems (ADAS) etc. These features require complex SoCs at heart which can collect, process and transfer data at a fast rate from multiple peripherals.
No matter at how much high frequency the single core is operating on, it will always have performance bottlenecks & challenges while performing multiple tasks. Single core running on higher frequency consumes more power. This makes the single core architecture unfit for ultra low power applications. Dual core based SOC architecture provide better tradeoff in performance and power consumption than single core based architectures.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
- Bluetooth Low Energy Subsystem IP
Related White Papers
- An IP core based approach to the on-chip management of heterogeneous SoCs
- Choosing between dual and single core media processor configurations in embedded multimedia designs
- Verification of IP Core Based SoC's
- Leverage UML and SysML in designing automotive software application architectures
Latest White Papers
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures