DRC debugging challenges in AMS/custom designs at 20 nm
Srinivas Velivala, Mentor Graphics
5/23/2013 5:16 PM EDT
The number and complexity of design rule checks (DRC) has always increased node over node, but as the semiconductor industry moves towards 20 nm and below, these increases are skyrocketing (Figure 1). The traditional DRC verification flow used by custom layout designers simply can’t provide the needed level of productivity when debugging DRC results at these advanced nodes. For example, custom layout designers are now confronted with complex checks that involve multiple factors, such as voltage-dependent design rule checks (VD-DRC) and double patterning (DP) checks.
In the long-established verification flow, the designer creates the layout in the design environment, writes out a GDSII file to disk, launches a DRC run, and then fixes the DRC errors in the design environment. Because the error correction and the validation of that correction are separate processes, designers must usually perform multiple iterations of this check-correct-verify process before they achieve signoff DRC closure.
To read the full article, click here
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related White Papers
- How to tackle serial backplane challenges with high-performance FPGA designs
- How to get more performance in 65 nm FPGA designs
- Security Challenges in Embedded Designs
- Mixed-Signal IP Design Challenges in 28 nm and Beyond
Latest White Papers
- Monolithic 3D FPGAs Utilizing Back-End-of-Line Configuration Memories
- Reimagining AI Infrastructure: The Power of Converged Back-end Networks
- 40G UCIe IP Advantages for AI Applications
- Recent progress in spin-orbit torque magnetic random-access memory
- What is JESD204C? A quick glance at the standard