Designing for safety and security in a connected system
Dan Smith and Andrew Girson, Barr Group
embedded.com (September 06, 2017)
Good embedded software has always been designed for both safety and security. However, connectivity has introduced intolerable levels of security vulnerability in safety-critical applications such as medical, autonomous vehicles, and Internet of Things (IoT) devices.
The tight coupling of safety and security, combined with heightened threat levels, requires developers to fully understand the difference between safety and security; also, to apply industry best practices to ensure that both are designed into a product, right from the start (Figure 1).
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Interstellar: Fully Partitioned and Efficient Security Monitoring Hardware Near a Processor Core for Protecting Systems against Attacks on Privileged Software
- A RISC-V Multicore and GPU SoC Platform with a Qualifiable Software Stack for Safety Critical Systems
- Designing AI enabled System with SOTIF (Safety Of The Intended Functionality)
- Enabling security in embedded system using M.2 SSD
Latest White Papers
- Transition Fixes in 3nm Multi-Voltage SoC Design
- CXL Topology-Aware and Expander-Driven Prefetching: Unlocking SSD Performance
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor