Control an FPGA bus without using the processor
Noe Quintero, Linear Technology
EDN (April 27, 2016)
Many FPGA designs use an embedded processor for control. A typical solution involves the use of a soft processor such as a Nios, though FPGA SoCs with a built-in hard processor have become popular too. Figure 1 shows a typical Altera FPGA system that contains the processor and a mix of peripherals that are connected via Altera’s Avalon Memory Mapped (MM) bus. These processors greatly simplify the end application, but require a strong programing background and knowledge of complicated toolchains. This can hinder debug, especially if a hardware engineer needs a simple way to read and write to the peripherals without pestering the software engineer.
This Design Idea uses Altera's SPI Slave to Avalon MM Bridge to provide a simple way to hop onto the Avalon bus. There are two advantages to this technique: It does not compromise the original system design, and the bridge can co-exist with the embedded processor. For the system shown in Figure 1, the SPI bridge allows the engineer to directly control the frequency of the LTC6948 fractional-N PLL, set the LTC1668 DAC voltage, read a voltage from the LTC2498 ADC, or read temperatures from the LTC2983, just like the processor can.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
Related White Papers
- How to accelerate genomic sequence alignment 4X using half an FPGA
- Add graphics without using a dedicated graphics controller
- Simplifying SoC design with the Customizable Control Processor
- Implementing Field-oriented Brushless Motor Control Using an ARM7 Processor
Latest White Papers
- aTENNuate: Optimized Real-time Speech Enhancement with Deep SSMs on RawAudio
- Combating the Memory Walls: Optimization Pathways for Long-Context Agentic LLM Inference
- Hardware Acceleration of Kolmogorov-Arnold Network (KAN) in Large-Scale Systems
- CRADLE: Conversational RTL Design Space Exploration with LLM-based Multi-Agent Systems
- On the Thermal Vulnerability of 3D-Stacked High-Bandwidth Memory Architectures