AI-driven SRAM demand needs integrated repair and security
By Meng-Yi Wu, eMemory
embedded.com (July 15, 2024)
Increasing popularity of AI applications and DPU architecture has led to growing demand for higher SRAM densities, in turn placing challenges on SRAM yield and reliability.
Along with the rise of the internet of things (IoT), mobile devices, and edge computing, the boom in AI-enhanced features has enabled the addition of even greater functionality in applications such as intelligent sensing, in-vehicle driver assistance (ADAS), and voice recognition, all of which require the use of increasingly larger training models.
However, as the progress of CPU performance slows, new ideas to reduce the I/O and data loading on CPUs are becoming more popular. These include such solutions as DPU or PIM (process in memory) architectures, as well as the introduction of hierarchical data processing. However, as more CPUs are required for hierarchical processing, there is a corresponding need for more SRAM caches to serve these high-speed CPUs. Thus, the increasing popularity of AI applications and DPU architecture implementations has led to growing demand for higher SRAM densities
To read the full article, click here
Related Semiconductor IP
- NPU IP Core for Mobile
- NPU IP Core for Edge
- Specialized Video Processing NPU IP
- HYPERBUS™ Memory Controller
- AV1 Video Encoder IP
Related White Papers
- Basics of SRAM PUF and how to deploy it for IoT security
- Secure Your Security Key in On-Chip SRAM: Techniques to avoid Data Remanance Attacks
- Security in transit
- Security needs more than checklist compliance
Latest White Papers
- Breaking the Memory Bandwidth Boundary. GDDR7 IP Design Challenges & Solutions
- Automating NoC Design to Tackle Rising SoC Complexity
- Memory Prefetching Evaluation of Scientific Applications on a Modern HPC Arm-Based Processor
- Nine Compelling Reasons Why Menta eFPGA Is Essential for Achieving True Crypto Agility in Your ASIC or SoC
- CSR Management: Life Beyond Spreadsheets