AI, and the Real Capacity Crisis in Chip Design
By Stelios Diamantidis, Synopsys (February 24, 2022)
Chip industry veterans are used to the cyclical nature of semiconductor supply and demand, but the ongoing chip shortage has been particularly tough for many. Supply chain disruptions will likely persist in the coming years and the semiconductor sector is unlikely to return to old norms.
There’s a more pressing crisis on the horizon, however, that will bring the semiconductor industry to its next turning point: The lack of engineering throughput will remain unless we optimize the chip design process.
Persistent chip shortages appear to be due to relatively short–term economic factors. But if we start thinking about chip design in a different way, it could offer new opportunities for advancements in chip production. Disruptions in semiconductor design certainly didn’t start the global chip shortage, but it’s doing its part to exacerbate the crisis.
To read the full article, click here
Related Semiconductor IP
- SPI Controller IP- Master/ Slave, Parameterized FIFO, Avalon Bus
- SPI Slave IP transfers to/from a AMBA APB, AXI, or AHB Interconnect
- I2C Controller IP – Slave, Parameterized FIFO, Avalon Bus
- I2C Controller IP – Master, Parameterized FIFO, Avalon Bus
- I2C/SMBus Controller IP – Master / Slave, Parameterized FIFO, AXI/AHB/APB/Avalon Buses, SMBus Protocol
Related White Papers
- Differentiation Through the Chip Design and Verification Flow
- Paving the way for the next generation of audio codec for True Wireless Stereo (TWS) applications - PART 5 : Cutting time to market in a safe and timely manner
- Integrating VESA DSC and MIPI DSI in a System-on-Chip (SoC): Addressing Design Challenges and Leveraging Arasan IP Portfolio
- The role of cache in AI processor design