ZTE Wireless Institute Achieves Performance Breakthrough for Deep Learning with Intel FPGAs
January 24, 2017 -- Intel and ZTE, a leading technology telecommunications equipment and systems company, have worked together to reach a new benchmark in deep learning and convolutional neural networks (CNN). The technology is what many companies in Internet search and artificial intelligence are trying to advance, and includes picture search and matching, as one example.
“Perception, such as recognizing a face in an image, is one of the essential goals of the ZTE 5G System,” said Duan Xiangyang, vice president of ZTE Wireless Institute. “Deep learning technology is very important as it can enable such perception in mobile edge computing systems, thus making ZTE’s 5G System smarter.”
The test took place in Nanjing City, China, where ZTE’s engineers used Intel’s midrange Arria® 10 FPGA for a cloud inferencing application using a CNN algorithm.
ZTE has achieved a new record – beyond a thousand images per second in facial recognition – with what is known as “theoretical high accuracy” achieved for its custom topology. Intel’s Arria 10 FPGA accelerated the raw design performance more than 10 times while maintaining the accuracy.
The Arria 10 FPGA provides up to 1.5 teraflops (TFLOPs) single precision floating-point processing performance, 1.15 million logic elements and more than a terabit-per-second high-speed connectivity.
Such deep learning designs can be seamlessly migrated from the Arria 10 FPGA family to the high-end Intel Stratix® 10 FPGA family, and users can expect up to nine times performance boost.
Besides the impressive increase in performance, the team at ZTE Wireless Institute sped design time with the use of the OpenCL programming language.
“With the Intel reference design, and using the Intel SDK for OpenCL to program the FPGA, our development time was greatly shortened,” said Xiong Tiankui, chief engineer at ZTE Wireless Institute. “We are pleased with the benchmark achieved and thank the Intel Programmable Solutions Group for supporting our project.”
Resources:
Configuration:
The benchmark was achieved on a server holding 4S Intel Xeon E5-2670v3 processors running at 2.30GHz, 128GB DDR4; Intel PSG Arria 10 FPGA Development Kit with one 10AGX115 FPGA, 4GB DDR4 SODIMM, Intel Quartus Prime and OpenCL SDK v16.1.
Related Semiconductor IP
- Video Tracking FPGA IP core for Xilinx and Altera
- Video Tracking FPGA IP core for Xilinx and Altera
- Video Tracking FPGA IP core for Xilinx and Altera
- Aurora-like 64b/66b @14Gbps for ALTERA Devices
- Aurora-like 8b/10b @3Gbps for ALTERA Devices
Related News
- Startup Digs Deep Learning, Snags Big Backers
- Altek License CEVA Imaging and Vision DSP for Deep Learning in Mobile Devices
- Neurala Announces $14 Million Series A to Bring Deep Learning Neural Network AI Software to Drones, Self-Driving Cars, Toys and Cameras
- Kalray Announces the Release of an Efficient Manycore Processing Solution Dedicated to Deep Learning
Latest News
- Frontgrade Gaisler and wolfSSL Collaborate to Enhance Cybersecurity in Space Applications
- Digital Core Design Unveils DPSI5 - The Next-Generation IP Core for PSI5 Communication
- Matrox Video and intoPIX Expand Interoperable IPMX & ST 2110 Solutions with JPEG XS Innovation at NAB 2025
- HCLTech joins Samsung Advanced Foundry Ecosystem as a Design Solution Partner
- TeraSignal to Showcase Retimer-Less PCIe 6.0 over Optics Featuring Synopsys IP at OFC 2025