Tezzaron Semiconductor announces a prototype memory device with record-breaking speed: 1.3 nanosecond (ns) latency, 1 ns cycle time, and a throughput of 2 Gigabits/sec on each pin
- Tezzaron Semiconductor today announced a prototype memory device with record-breaking speed: 1.3 nanosecond (ns) latency, 1 ns cycle time, and a throughput of 2 Gigabits/sec on each pin. The underlying technology for this device is a patented 3-transistor cell that senses changes in electrical current rather than measuring electrical voltage. Tezzaron calls the new memory PSiRAM™ – the “PS” indicates its pseudo-static performance, and “i” is the symbol for electrical current. The prototype is a quad data rate (QDR) device designed as a 32 Megabit device in a 2Meg x 16bit configuration. It is designed to run at 1.2 V, but operation has also been tested at 0.8 V; at the lower voltage, the device exhibits speeds in excess of 400 MHz and power dissipation of less than 0.125 W.
Although Tezzaron is better known for 3D semiconductor technology, it also develops memory innovations. PSiRAM™ development surged to the forefront last year with the sudden availability of a 90-nanometer manufacturing run. This opportunity, arranged by IP supplier Virtual Silicon Technologies, was a perfect fit for a PSiRAM™ prototype.
The manufacturing opportunity dictated an extremely tight schedule. Tezzaron’s engineers tackled the challenge at a breakneck pace, putting in 20-hour days, sleeping in a spare office, and working through weekends and the Christmas holidays. “It was a super-human achievement,” says Tezzaron’s CTO, Robert Patti. “72 million transistors and more than 250 custom layouts – no standard cells – and it went from concept to tape-out in only seven weeks. And it succeeded in first-pass silicon! These guys are truly incredible.”
Team leader Mark Hilbert acknowledged Virtual Silicon’s valuable assistance with layout verification, and gave credit to Cadence Design Systems tools as well: “We have years of experience with these tools; the Cadence® custom design flow was a big factor. The tool capabilities saved us a lot of time, especially with a design of this complexity.”
The PSiRAM™ prototype was built in a 90-nanometer facility, producing memory cells measuring only 0.59 square microns each. Because PSiRAM™ uses a standard CMOS logic process, it is ideal for SoC (System on Chip) processing and development; Tezzaron intends to license PSiRAM™ technology for use in SoC applications.
Tezzaron plans full production of PSiRAM™ chips next year. A 130-nanometer version is slated for the first half of 2004, followed by a 90-nanometer version late in the year.
Tezzaron Semiconductor is a privately funded corporation with headquarters in Naperville, Illinois, and a processing subsidiary in Singapore. For more information, visit www.tezzaron.com.
# # #
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related News
- Intilop delivers true Ultra-low latency 10G NIC with their 5th Gen 76 ns TCP & UDP Offload technology breaking yet another record in latency and bandwidth
- Intilop's enhanced Dual 10G NIC powered by their 76 ns TCP accelerator beats Solarflare 10G NIC delivering 4x higher throughput and 4x lower latency
- Sequans Introduces Calliope 2: A New Generation of LTE Cat 1 Technology for IoT Applications Requiring Higher Than LTE-M Speed
- Intilop Corporation announces release of a whole new series of 4th Gen Ultra-Low latency; sub 100 ns, Full TCP Offload and UDP Offload Engines and System solutions for the entire Network Communication sector
Latest News
- CAST Releases First Dual LZ4 and Snappy Lossless Data Compression IP Core
- Arteris Wins “AI Engineering Innovation Award” at the 2025 AI Breakthrough Awards
- SEMI Forecasts 69% Growth in Advanced Chipmaking Capacity Through 2028 Due to AI
- eMemory’s NeoFuse OTP Qualifies on TSMC’s N3P Process, Enabling Secure Memory for Advanced AI and HPC Chips
- AIREV and Tenstorrent Unite to Launch Advanced Agentic AI Stack