Moore's Law Isn't Slowing down - Just Ask System Companies
By Thomas Wong, Cadence
EETimes (July 20, 2020)
Moore’s Law, the tenet that the number of transistors on a chip will double every 18-24 months, has driven the electronics industry for decades. Today, there’s no denying that Moore’s Law is showing its age, with some semiconductor industry leaders going so far as to rewrite its definition. In this era of More-than-Moore, chipmakers are turning to new materials, 3D wafer stacking and heterogeneous integration – die with different manufacturing process nodes and technologies integrated within a single package – to keep driving the pace of advancement.
As semiconductor technology continues to advance, the time to transition from one process node to the next has shrunk significantly. Once assuming a fairly predictable cadence of around four years, the transition from 28nm to 20nm and then to 16nm took approximately 18 months each, despite the industry’s simultaneous move from planar to FinFET transistors at 16nm. Moving to FinFET was a big deal, because it got us back on the Moore’s Law scaling chart.
Not only did we achieve a much-needed area advantage, but we also gained a reduction in power consumption – a key metric for smartphone applications processors. Designers must now undertake a delicate balancing act between battery size/weight and the aesthetics of a slim smartphone against the backdrop of a plethora of additional features (such as a larger screen, better wireless connectivity, higher resolution camera, more storage, fast browser, etc.).
The relentless drive for the next big thing in smartphones and the annual, sometimes bi-annual, product release cadence by major smartphone suppliers have pushed the pace of process migration down to 7nm. We are on the cusp of seeing 5nm applications processors in the next generation of smartphones, and it’s likely that many premium smartphones for the 2020 holiday season will all be powered by 5nm chips! Regardless of market saturation predictions for smartphones worldwide and the reality that unit shipments are hovering at single digit growth, it is still a very lucrative, high-volume market.
To read the full article, click here
Related Semiconductor IP
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- LZ4/Snappy Data Compressor
Related News
- Moore's Law could enter the fourth dimension--via the third
- Moore's Law threatened by lithography woes
- Broadcom: Time to prepare for the end of Moore's Law
- Is Moore's Law Dead? Does It Matter?
Latest News
- CAST Releases First Dual LZ4 and Snappy Lossless Data Compression IP Core
- Arteris Wins “AI Engineering Innovation Award” at the 2025 AI Breakthrough Awards
- SEMI Forecasts 69% Growth in Advanced Chipmaking Capacity Through 2028 Due to AI
- eMemory’s NeoFuse OTP Qualifies on TSMC’s N3P Process, Enabling Secure Memory for Advanced AI and HPC Chips
- AIREV and Tenstorrent Unite to Launch Advanced Agentic AI Stack