As Moore's Law slows, open hardware rises
Jessica MacNeil, EDN
April 04, 2014
At 8-years old, Andrew “Bunnie” Huang appreciated the fact that his Apple II came with schematics and source code because it allowed him to figure out how it worked.
“I was wondering what all these little black things on the board were and I would take the chips out and put them in backwards, even though my dad told me not to,” said Huang during his EE Live! 2014 keynote on open-source hardware and the future of embedded systems. “He was right; you don’t put the chips in backwards.”
Today that information is guarded and protected in the hardware industry and Huang, now a research affiliate at MIT who holds a PhD in electrical engineering from the school, realized this change wasn’t because hardware became too complex, but because it was too easy to improve, and Moore’s Law was tough to keep up with.
If Moore’s Law saw technology doubled every 18 months, that meant someone working on a linear improvement, like optimizing a process node, could be getting 80% performance improvement per year, and Moore’s Law would be shipping something better by year two.
“So the problem has been that sitting and waiting has actually been a viable strategy versus innovation,” said Huang. “This problem is particularly acute in hardware.”
To read the full article, click here
Related Semiconductor IP
- General use, integer-N 4GHz Hybrid Phase Locked Loop on TSMC 28HPC
- JPEG XL Encoder
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
Related News
- Bluespec Unveils Groundbreaking "RISC-V Factory" - Empowering Open Source Hardware Developers to Build Faster and More Efficiently
- Can Open Source Hardware Emulate Linux?
- BSC develops four open-source hardware components based on RISC-V, contributing to open, reliable and high-performance safety-critical systems for industry
- Moore Microprocessor Portfolio (MMP) Inventor Files Lawsuit against TPL Group
Latest News
- Mixel MIPI IP Integrated into Automotive Radar Processors Supporting Safety-critical Applications
- GlobalFoundries and Navitas Semiconductor Partner to Accelerate U.S. GaN Technology and Manufacturing for AI Datacenters and Critical Power Applications
- VLSI EXPERT selects Innatera Spiking Neural Processors to build industry-led neuromorphic talent pool
- SkyWater Technology and Silicon Quantum Computing Team to Advance Hybrid Quantum-Classical Computing
- Dnotitia Revolutionizes AI Storage at SC25: New VDPU Accelerator Delivers Up to 9x Performance Boost