iWave Unveils the Implementation of ARINC 818-2 IP Core On Microsemi PolarFire FPGA
December 23, 2020 -- The ARINC 818 video protocol since its inception has gained wide adoption on large aircrafts such as Airbus A350XWB, Boeing 787, KC46A, and many others. ARINC 818 protocol is used to provide point to point, high-speed, low-latency video transmission for mission-critical systems such as cockpit display, video processors, cameras, and IR sensors. Offering high-speed ARINC 818 interfaces in FPGA arises many challenges due to low-latency and synchronous timing requirements for most displays.
iWave Systems, being the leading FPGA design house, offers an extensive portfolio of FPGA IP Cores. And one of the most predominant being ARINC 818 IP. Today, we are excited to announce the successful implementation of iWave’s ARINC 818 IP Core on Microsemi PolarFire FPGA devices. The PolarFire devices offer the highest security, small form factor, flash-based FPGA, that consume 50% low power competing to mid-range FPGA’s.
Key features include:
- Fully compliant with ARINC 818-2 standards
- Can be used for both transmit and receive applications
- Flexible streaming video interface
- Configurable ADVB video formats(resolution, pixel type, etc.)
- Supports progressive and interlaced video formats
- IP parameters can be configured as per customers interface control document(ICD)
- Transmission medium – either optical or copper
The ARINC 818-2 complaint PolarFire FPGA evaluation kit is suitable for various high-performance applications and functionalities that include communication, military, aviation.
With strong competence in FPGA, iWave Systems has demonstrated the seamless integration of iWave’s ARINC 818-2 IP transmitter and receiver functionality on Microsemi’s PolarFire FPGA evaluation kit.
Demo description:
FPGA Platform | Microsemi PolarFire FPGA EVK |
FMC card | Multi-video interface Add on FMC card iW-EMELA-PC-01-R1.0 |
HDMI Monitor | To display the video output |
Fig 1.0: System architecture for external loopback test
Fig 1.2: Demo implementation
Demo: External loopback test
The ARINC 818-2 IP transmitter block receives the video data generated by the internal test pattern generator and converts it into ADVB frames. These ADVB frames are sent out through an FPGA transceiver that is connected to the SFP module. These ADVB frames are looped back to the Rx channel via the SFP module, which is then decoded by the ARINC 818-2 IP receiver block to retrieve the video data and is then displayed on the HDMI monitor.
To watch the demo, click here.
The ARINC 818 protocol has become the effective standard for high-performance military and avionics video systems, and with this, we help our customers realize their ideas into reality with assured strong and unparalleled FPGA design-to-deployment competence.
iWave Systems has also evaluated ARINC 818 IP Core across a wide range of Xilinx and Intel-based evaluation kits and has successfully licensed ARINC 818 IP to many of our esteemed clients around the world.
With 20+ years of valuable expertise in the FPGA domain, iWave Systems offers FPGA designs tailored to meet customer’s specific requirements. We offer an extensive suite of FPGA based IP cores such as ARINC818 Complete suite, Storage, Legacy processors, and video processing IP’s.
iWave Systems presents an extensive portfolio of standard/custom System On Modules, SBC based on Xilinx Zynq & Zynq MPSoC SoC devices, Intel Arria10 & Cyclone V devices, and comprehensive Engineering design services involving embedded hardware, FPGA, and software development in servicing to multiple domains across the globe such as Industrial, Medical, Automotive, IoT and Computer Vision.
For more information or inquiries, please write to mktg@iwavesystems.com or log on to our website www.iwavesystems.com
Related Semiconductor IP
Related News
- iWave unveils the implementation of ARINC 818-2 IP Core in next-generation Combat Aircraft, designed by the Aeronautical Development Agency (ADA), Bangalore, India
- Microsemi Collaborates with Silicon Creations to Enable Industry's Lowest Power FPGA 12.7G Transceivers With PHYs for Microsemi's PolarFire FPGAs
- Microsemi and Athena Announce the TeraFire Hard Cryptographic Microprocessor for PolarFire "S Class" FPGAs, Providing Advanced Security Features
- Microsemi and Synopsys Extend 20-Year OEM Relationship and Collaborate on New PolarFire FPGAs to Deliver Customized Synthesis Support
Latest News
- PCI-SIG’s Al Yanes on PCIe 7.0, HPC, and the Future of Interconnects
- Ubitium Debuts First Universal RISC-V Processor to Enable AI at No Additional Cost, as It Raises $3.7M
- Cadence Unveils Arm-Based System Chiplet
- Frontgrade Gaisler Unveils GR716B, a New Standard in Space-Grade Microcontrollers
- Blueshift Memory launches BlueFive processor, accelerating computation by up to 50 times and saving up to 65% energy