IoT Needs More Than Moore
Tom Quan, TSMC
EETimes (1/12/2015 06:00 AM EST)
The Internet of Things requires specialty processes, pioneered by smartphone chips, to create optimal IoT silicon, says a TSMC executive.
More-than-Moore technology sales skyrocketed when smartphones took off five years ago. Also known as specialty technologies, these devices complement the digital processing and storage elements of an integrated system by allowing interaction with the outside world. Our CTO likens them to human sensory organs such as sight, hearing, and sensation.
Smartphones in particular, are like little specialty technology storehouses. Consider that the 1.24 billion smartphones that shipped worldwide in 2014 each contain ten or more specialty chips for microphones, cameras, gyroscopes, accelerometers and more. Rapid growth is expected in several areas such as image signal processors stacked with CMOS Image Sensors (CIS), mixed signal for fingerprint sensors, small panel drivers, and embedded flash for near-field communications and touch-screen controllers.
Several emerging opportunities also rely on specialty technologies. Among those with the most potential is the nascent Internet of Things (IoT), ready to devour billions of ICs to fulfill its promise of connecting all our gadgets to us through the Web. The IoT presents the semiconductor community with nearly limitless opportunities thanks to specialty technology foundry services with the ability to integrate flash, CIS, RF, high voltage, power and MOSFET technologies.
Foundries are launching updated offerings and migrating select technologies to new process nodes that will trim power consumption and meet growing demand by increasing the number of die per wafer. TSMC, for example, introduces 30-50 new specialty technologies annually and the manufacture of these devices currently accounts for 25 percent of our business.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- TSMC CLN5FF GUCIe LP Die-to-Die PHY
- Flipchip 1.8V/3.3V I/O Library with ESD-hardened GPIOs in TSMC 12nm FFC/FFC+
- TSMC CLN3FFP HBM4 PHY
- Wi-Fi 7(be) RF Transceiver IP in TSMC 22nm
Related News
- MediaTek, AMD, and SK Hynix's 1H14 Sales Surge by more than 20%!
- Synopsys DesignWare USB 3.0 IP Shipped in More Than 100 Million Production SoCs
- Gartner Says Worldwide Semiconductor Capital Spending to Increase by More Than 11 Percent in 2014
- Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives
Latest News
- Alphacore is gearing up for a high-impact presence at the 2025 Diminishing Manufacturing Sources and Material Shortages & Parts Management Consortium
- SpaceX Acquires Akoustis’s IP, Murata and RadRock Dominate Q2 2025 RF Front-End Patent Activity
- The TekStart Group Enters into Distribution Agreement with Techno Mathematical to Promote Advanced Hardware and Software CODEC Solutions
- Alchip Introduces 2nm Design Platform
- Arteris Selected by Whalechip for Near-Memory Computing Chip