The fabless-foundry model will survive (at least through 14-nm)
Handel Jones, International Business Strategies Inc.,
EETimes (6/15/2012 6:59 PM EDT)
Editor's note: This article was rewritten in rebutal to comments made in April by Mark Bohr, an Intel Senior Fellow. As reported by EE Times, Bohr said the fabless-foundry model is"collapsing."
What are the problems?
1. Parametric yields at 28 nm are not at expected levels. Process variables such as random dopant fluctuations, line width and line gap variations, and via resistance, which affect RC-related timing issues, result in both unpredictable and low parametric yields for the targeted specifications. The process variables have increasing impact on leakage, power consumption and yields.
To read the full article, click here
Related Semiconductor IP
- Bluetooth Low Energy 6.0 Digital IP
- Flash Memory LDPC Decoder IP Core
- SLM Signal Integrity Monitor
- 1.8V Capable GPIO on Samsung Foundry 4nm FinFET
- Bluetooth Low Energy 6.0 Scalable RF IP
Related News
- ARM Unveils IP Portfolio Program - New Model for ARM IP
- Carbon and MIPS Technologies Partner for Model Distribution
- CoWare and Carbon Announce CoWare Model Library Availability of Implementation-Accurate Models of ARM IP
- eInfochips announces DDR2 SDRAM SystemVerilog & VMM based Memory Model Generator Tool
Latest News
- EnSilica cuts post-quantum cryptography (PQC) silicon area with three-in-one IP block
- Perceptia Devices Release pPLL08W, best-in-class RF PLL IP in GF22FDX
- Axiomise Partners With Bluespec to Verify Its RISC-V Cores
- Rapidus Achieves Significant Milestone at its State-of-the-Art Foundry with Prototyping of Leading-Edge 2nm GAA Transistors
- SEMIFIVE Files for Pre-IPO Review on KRX