The fabless-foundry model will survive (at least through 14-nm)
Handel Jones, International Business Strategies Inc.,
EETimes (6/15/2012 6:59 PM EDT)
Editor's note: This article was rewritten in rebutal to comments made in April by Mark Bohr, an Intel Senior Fellow. As reported by EE Times, Bohr said the fabless-foundry model is"collapsing."
What are the problems?
1. Parametric yields at 28 nm are not at expected levels. Process variables such as random dopant fluctuations, line width and line gap variations, and via resistance, which affect RC-related timing issues, result in both unpredictable and low parametric yields for the targeted specifications. The process variables have increasing impact on leakage, power consumption and yields.
To read the full article, click here
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related News
- TSMC Selects Legend's Model Diagnoser for Standard Cell Library Quality Assurance
- HDL Design House announces AT25DF161 VITAL behavioral model
- Carbon Design Systems Adds Co-Simulation Model Library to Expanding System-Level Validation Tool Suite
- Carbon Automates AXI Interconnect Model Creation
Latest News
- proteanTecs Appoints Noritaka Kojima as GM & Country Manager and Opens New Japan Office
- QuickLogic Reports Fiscal Third Quarter 2025 Financial Results
- lowRISC® and Partners to Deliver Commercial-Quality, Open-Source CHERI Secure Enclave with InnovateUK Support
- M31 Technology: Advanced Nodes and Royalties Drive 20% Revenue Growth Target for 2025
- Tachyum Unveils 2nm Prodigy with 21x Higher AI Rack Performance than the Nvidia Rubin Ultra