EnSilica launches Kalman Filter acceleration IP core for advanced driver assistance systems (ADAS)
Wokingham, UK – March 23, 2016. EnSilica, a leading independent provider of semiconductor solutions and IP, has launched a Kalman Filter acceleration IP core for use in situational awareness radar sensors for advanced driver assistance systems (ADAS), such as electronic stability control systems, pre-crash impact mitigation, blind spot detection, lane departure detection, and self-parking. The Kalman Filter acceleration IP core, which is part of EnSilica's emerging automotive IP portfolio that also includes pipelined FFT and Constant False Alarm Rate (CFAR) cores, provides an estimated speed improvement over software-only solutions of up to 10x.
Kalman filtering is used in sensor-based ADAS as part of the radar tracker in order to smooth out position and velocity measurements obtained from the radar sensors and front-end DSP unit. The development of EnSilica’s Kalman Filter acceleration IP core follows the guidelines necessary for integration with devices adhering to the ISO 26262 functional safety standard for road vehicles. It supports both classical Kalman filtering (KF) and extended Kalman filtering (EKF), the latter being applicable when there is a non-linear relationship between the target’s Kalman state and the radar measurements.
The compact, low gate-count architecture of EnSilica’s Kalman Filter acceleration IP core enables the computationally intensive matrix operations involved in Kalman filtering to be cost-effectively offloaded from the CPU. It operates on Range (distance), Doppler (velocity) and Azimuth (positional) measurements and applies Kalman filtering in order to predict the target’s position in the next time interval. It combines the radar measurements with a dynamic motion model for enhancing the target position and velocity estimates with forward prediction, allowing false alarm measurements to be discarded. The Kalman Filter acceleration IP core also provides a generic algorithm framework for fusing measurements from different sensors into a single target track.
For a typical automotive radar system, EnSilica’s Kalman Filter acceleration IP core can provide a state update computation in about 10µs. This enables a large number of target tracks to be maintained at any given time, as this level of processing latency is very short compared to a usual radar measurement cycle, which is in the order of a few milliseconds. The core undertakes five main computational steps - setting the initial values, prediction of the state and error co-variance, computation of the Kalman gain, computation of the estimate and computation of the error co-variance - using floating point arithmetic in order to maintain numerical stability and provide identical results to a software implementation. RAM blocks of typically 8Kbits, depending on the matrix dimensions, are used to hold the computational matrices.
“Kalman Filter tracking is essential to radar-based advanced driver assistance systems as well as drones, UAV and UGV requiring fast and responsive situational awareness using multiple sensors,” said Ian Lankshear, CEO of EnSilica. “Integrating the EnSilica Kalman Filter acceleration IP core in the front-end DSP unit for the computationally demanding processing tasks of Kalman filtering provides a cost-effective ASIC or FPGA solution for enhancing overall system performance and releasing valuable CPU resources.”
About EnSilica
EnSilica was founded in 2001 and has a strong track record of success in delivering ASIC and FPGA based solutions to semiconductor companies and OEMs worldwide. The company is headquartered in the UK and has subsidiaries in India and the USA. The company is a specialist in low-power ASIC design and complex FPGA-based embedded systems. In addition to supplying IP and turnkey ASIC/FPGA development and supply, EnSilica also provides point services to companies with in-house ASIC design teams. These services include system engineering, analog and mixed signal design, and advanced verification using UVM, DFT and physical implementation. For further information about EnSilica, visit http://www.ensilica.com.
Related Semiconductor IP
- Root of Trust (RoT)
- Fixed Point Doppler Channel IP core
- Multi-protocol wireless plaform integrating Bluetooth Dual Mode, IEEE 802.15.4 (for Thread, Zigbee and Matter)
- Polyphase Video Scaler
- Compact, low-power, 8bit ADC on GF 22nm FDX
Related News
- X-Silicon Announces a NEW Low-Power Open-Standard Vulkan-Enabled C-GPU™ - a RISC-V Vector CPU Infused with GPU ISA and AI/ML acceleration in a Single Processor Core
- Silicon-Proven 14-Bit 4.32 GSps Wide Band ADC IP Core with Time-Interleaved Pipeline Architecture Now Available for Whitebox Licensing with No Royalty Fees
- T2M-IP Unveils MIPI D-PHY v2.5 Tx and DSI Tx Controller v1.2: Silicon-Proven, Low-Power, Cost-Effective IP Core Solutions for Advanced SoCs
- 16-Bit, 5MSPS SAR ADC IP Core Silicon-Proven: Delivers Superior Dynamic Performance with Flexible Resolution Modes for Next-Generation Applications
Latest News
- How hardware-assisted verification (HAV) transforms EDA workflows
- BrainChip Provides Low-Power Neuromorphic Processing for Quantum Ventura’s Cyberthreat Intelligence Tool
- Ultra Accelerator Link Consortium (UALink) Welcomes Alibaba, Apple and Synopsys to Board of Directors
- CAST to Enter the Post-Quantum Cryptography Era with New KiviPQC-KEM IP Core
- InPsytech Announces Finalization of UCIe IP Design, Driving Breakthroughs in High-Speed Transmission Technology