Domain Specific Accelerators Will Drive Vector Processing on RISC-V
By Charlie Cheng, Andes Technology (May 26, 2020)
When the RISC-V market first began, the initial rush was to cost reduce designs that would have otherwise used proprietary CPU instruction set architectures (ISAs) in deeply embedded applications. When these systems on chips (SoCs) began being fabricated in FinFET semiconductor process technology, the mask costs grew so expensive that many finite state machines were replaced with programmable micro sequencers based on the RISC-V instruction set. These created the initial excitement and later on the commoditization of simple RISC-V cores from 2014 to 2018.
As the RISC-V architecture became more mature and SoC designers became familiar with the ISA, it found adoption in real-time applications that demanded high performance: in particular, serving as a front end to highly specialized acceleration engines for applications such as artificial intelligence. One key reason for this adoption is that RISC-V is an open architecture for users to add instructions, so the RISC-V processors did not have to treat the accelerators as memory-mapped I/O devices, as was the case for traditional architectures. Instead, they can use a low-latency co-processor.
To read the full article, click here
Related Semiconductor IP
- All-In-One RISC-V NPU
- Configurable RISC-V processor IP core
- MIPI I3C Master RISC-V based subsystem
- ISO26262 ASIL-B/D Compliant 32-bit RISC-V Core
- RISC-V CPU IP
Related News
- Semidynamics on major recruitment drive for RISC-V software engineers
- Will Apple Drive Analog ICs?
- Wally Rhines: Deep Learning Will Drive Next Wave of Chip Growth
- Moving AI Processing to the Edge Will Shake Up the Semiconductor Industry
Latest News
- How CXL 3.1 and PCIe 6.2 are Redefining Compute Efficiency
- Secure-IC at Computex 2025: Enabling Trust in AI, Chiplets, and Quantum-Ready Systems
- Automotive Industry Charts New Course with RISC-V
- Xiphera Partners with Siemens Cre8Ventures to Strengthen Automotive Security and Support EU Chips Act Sovereignty Goals
- NY CREATES and Fraunhofer Institute Announce Joint Development Agreement to Advance Memory Devices at the 300mm Wafer Scale