Why your DL accelerator should be replaced
Intelligence is quickly being added to all our electronics devices. Whether it’s our vehicles that automatically brake when things get dangerous, our phone’s cameras that ensure every picture we take looks great, or our datacenters that need to not just store and distribute our videos, but also understand what’s in them – intelligent image processing using deep learning is everywhere.
But just adding a deep learning accelerator next to a chip’s host CPU subsystem doesn’t mean you have a chip that can handle all the required visual computing tasks. While we’ve seen some designs that didn’t realize this, many SOCs these days do have multiple compute engines for the different imaging-related processing duties.
To read the full article, click here
Related Blogs
- Why You Should Create Your Own NPU Benchmarks
- Why Secure Boot is Your Network’s Best Friend (And What BlackTech Taught Us)
- Mentor Graphics Should Be Acquired or Sold: Carl Icahn
- Mentor Graphics Should Be Acquired or Sold: Carl Icahn COUNTERPOINT
Latest Blogs
- The Growing Importance of PVT Monitoring for Silicon Lifecycle Management
- Unlock early software development for custom RISC-V designs with faster simulation
- HBM4 Boosts Memory Performance for AI Training
- Using AI to Accelerate Chip Design: Dynamic, Adaptive Flows
- Locking When Emulating Xtensa LX Multi-Core on a Xilinx FPGA