Power Management of PCIe PIPE Interface
Lately we have seen a trend of serial data transfers in place of parallel data transfer for improved performance and data integrity. One example of this is the migration from PCI/PCI-X to PCI Express. A serial interface between two devices results in fewer number of pins per device package. This not only results in reduced chip and board design cost but also reduces board design complexity. As serial links can be clocked considerably faster than parallel links, they would be highly scalable in terms of performance.
However, to accelerate verification of PCI Express based sub-systems and to accelerate the PCI Express endpoint development time , PIPE (PHY Interface for the PCI Express Architecture) was defined by Intel and was published for industry review in 2002. PIPE is a standard interface defined between a PHY sub-layer which handles the lower levels of serial signaling and the Media Access Layer (MAC) which handles addressing/access control mechanisms. The following diagram illustrates the role PIPE plays in partitioning the PHY layer for PCI Express.
To read the full article, click here
Related Semiconductor IP
- USB 20Gbps Device Controller
- Fault Tolerant DDR2/DDR3/DDR4 Memory controller
- 25MHz to 4.0GHz Fractional-N RC PLL Synthesizer on TSMC 3nm N3P
- AGILEX 7 R-Tile Gen5 NVMe Host IP
- 100G PAM4 Serdes PHY - 14nm
Related Blogs
- Synopsys Cloud: The Power of Automated License Management
- Verification of PCIe's TDISP for Device Interface Security
- Intel’s Atom-based Tunnel Creek SOC with integrated PCIe interface opens new era for embedded developers
- PCI Express takes on Apple/Intel Thunderbolt and 16 Gtransfers/sec at PCI SIG while PCIe Gen 3 starts to power up
Latest Blogs
- Cadence Powers AI Infra Summit '25: Memory, Interconnect, and Interface Focus
- Integrating TDD Into the Product Development Lifecycle
- The Hidden Threat in Analog IC Migration: Why Electromigration rules can make or break your next tapeout
- MIPI CCI over I3C: Faster Camera Control for SoC Architects
- aTENNuate: Real-Time Audio Denoising