The Future of Mobile Devices and the Semiconductor Landscape!
During my trip to Taiwan I hopped on over to Hong Kong for a speaking engagement. One of the things I do as an “Internationally Recognized Industry Expert” is help the financial world understand the semiconductor landscape as it pertains to SoCs and mobile devices. Usually I do this over the phone or in writing but I prefer to do it in person whenever possible. Nothing compares to the human connection with eye contact and a firm handshake. The Q&A part is my favorite since I get to ask questions too.
I generally start with a brief history of the fabless semiconductor industry then talk about specific technologies in use today, the major players in the market, and where I see them going forward. The examples I use are from my work with the top fabless semiconductor companies, the foundries, and the design enablement ecosystem (EDA and IP). That takes about 45 minutes I then open it up for questions. The big question is what will happen to the semiconductor landscape in the coming years? For me, the “coming years” means the coming semiconductor process nodes, 20nm, 16nm, and 10nm.
To read the full article, click here
Related Semiconductor IP
- MIPI SoundWire I3S Peripheral IP
- Post-Quantum ML-KEM IP Core
- MIPI SoundWire I3S Manager IP
- eDP 2.0 Verification IP
- Gen#2 of 64-bit RISC-V core with out-of-order pipeline based complex
Related Blogs
- MIPI: Powering the Future of Connected Devices
- Cadence at the TSMC OIP: Pioneering the Future of Semiconductor Design
- Shaping the Future of Semiconductor Design Through Collaboration: Synopsys Wins Multiple TSMC OIP Partner of the Year Awards
- Intel, Arm, 3D FinFETs & mobile computing's future
Latest Blogs
- ML-KEM explained: Quantum-safe Key Exchange for secure embedded Hardware
- Rivos Collaborates to Complete Secure Provisioning of Integrated OpenTitan Root of Trust During SoC Production
- From GPUs to Memory Pools: Why AI Needs Compute Express Link (CXL)
- Verification of UALink (UAL) and Ultra Ethernet (UEC) Protocols for Scalable HPC/AI Networks using Synopsys VIP
- Enhancing PCIe6.0 Performance: Flit Sequence Numbers and Selective NAK Explained