EDA and Systems Design Converge...Or Do They?
For decades systems designers and IC designers have taken different paths. The former have relied primarily on block-level schematics for hardware definition. Except for teams facile in FPGAs, they have treated the chips in their designs as frozen blocks. For verification they have trusted prototypes over any form of simulation.
In contrast, IC designers long ago moved to language-based hardware description—first to describe the flow of data through registers in a synchronous digital design, and later to describe the function and interconnection of blocks at behavioral level. These designers, constrained by the multi-million-dollar costs of building a prototype IC to see how it works, rely on software simulation and formal analysis as verification tools, selectively using FPGA-based prototypes to complement these approaches.
To read the full article, click here
Related Semiconductor IP
- Special Purpose Low (Statistical) offset Operation Amplifier
- Rail to Rail Input and Output Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- Special Purpose Low offset Operational Amplifier
- High Current, Low offset fast Operation Amplifier
Related Blogs
- Carbon Design Systems
- ICCAD Keynote: Design of Secure Systems - Where are the EDA Tools?
- Design IP Growth Is Fueling 94% of EDA Expansion
- Can the Semiconductor Industry Overcome Thermal Design Challenges in Multi-Die Systems?
Latest Blogs
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security
- Ceva-XC21 and Ceva-XC23 DSPs: Advancing Wireless and Edge AI Processing
- Cadence Silicon Success of UCIe IP on Samsung Foundry’s 5nm Automotive Process
- Empowering your Embedded AI with 22FDX+