ARM 1176 in IBM SOI process demonstrates a cell-based flow
For several years it has been clear that SoI processes have a more favorable speed vs. voltage characteristic than comparable-node bulk silicon processes. This advantage can mean either lower operating voltage at a given speed---and thus lower power—or higher performance at a given voltage. And the presence of vast quantities of both the Xbox 360 and the PlayStation-3 should eliminate any question about volume manufacture, at least from IBM. So why is SoI still so rarely used?
The normal answer is the lack of design infrastructure. Early on, most SoI designs were at the high-performance fringe, and so people rightly associated SoI with custom design and highly-skilled teams. It would require new device models, new libraries, and new tools to make SoI work in a normal cell-based RTL flow, this reasoning said.
Related Semiconductor IP
- RISC-V CPU IP
- AES GCM IP Core
- High Speed Ethernet Quad 10G to 100G PCS
- High Speed Ethernet Gen-2 Quad 100G PCS IP
- High Speed Ethernet 4/2/1-Lane 100G PCS
Related Blogs
- SOI need a large IP Ecosystem, 100% Reliable Novocell NVM IP is now part of IBM SOI 32nm ecosystem
- IBM Introduces New PowerPC CPU Core
- TSMC vs GlobalFoundries vs IBM
- Bringing MEMS and asynchronous logic into an SoC design flow
Latest Blogs
- Why Choose Hard IP for Embedded FPGA in Aerospace and Defense Applications
- Migrating the CPU IP Development from MIPS to RISC-V Instruction Set Architecture
- Quintauris: Accelerating RISC-V Innovation for next-gen Hardware
- Say Goodbye to Limits and Hello to Freedom of Scalability in the MIPS P8700
- Why is Hard IP a Better Solution for Embedded FPGA (eFPGA) Technology?