Adapteva's Epiphany Floating Point Processor Core: A Leading-Edge Lithography May Finally Open Doors
Cost- and power consumption-sensitive digital signal processing applications tend to leverage fixed point processors, for a common fundamental reason: fixed-point processor cores are substantially less complex than their floating-point counterparts, leading to reductions in transistor count and silicon area. Yet fixed-point processing comes with trade-offs of its own; code development, for example, is complicated by the need to comprehend the potential for overflow, underflow and round-off errors. And floating-point processors also tend to support wider data words and are therefore inherently capable of higher dynamic range.
A floating-point digital signal processor is often preferable to its fixed-point counterpart, therefore, in traditional markets such as high-end audio and image processing and various medical and military/aeronautics systems. And were a floating-point processor to ever achieve fixed point-like cost and power consumption metrics, it might also be of interest in consumer electronics' embedded vision and multimedia processing and other mainstream high-volume applications. Adapteva, with the company's Epiphany platform, believes that its floating point DSP architecture is optimized for such tasks, and the recent combination of a cash infusion and a successful 28 nm lithography shrink bolster the company's confidence.
To read the full article, click here
Related Semiconductor IP
- SLVS Transceiver in TSMC 28nm
- 0.9V/2.5V I/O Library in TSMC 55nm
- 1.8V/3.3V Multi-Voltage GPIO in TSMC 28nm
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
Related Blogs
- The Apple iPad's A4 Processor Runs an ARM9 Core (or Maybe a Cortex-A9)
- ARM Cortex-A15 - does this processor IP core need a new category ... Superstar IP?
- Samsung 20nm test chip includes ARM Cortex-M0 processor core. How many will fit on the head of a pin?
- Processor Wars: NVIDIA reveals a phantom fifth ARM Cortex-A9 processor core in Kal-El mobile processor IC. Guess why it's there?
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms