3 Challenges Of Delivering Configurable Semiconductor IP
Commercially useful IP is orders of magnitude more difficult to create than fixed-configuration IP.
Over time, commercial IP products have morphed from single function blocks to 100% configurable IPs where no two instances are the same. In this article I point out the challenges of creating configurable IP, and the best-known practices to address them.
IP Configurability Spectrum
Throughout the history of chip design, there has been a spectrum of configurability that has been built into internally developed and commercial semiconductor design IP. In the early days of chip design, sections of chip designs (i.e. IP blocks) were mostly fixed-function and therefore were not configurable. We still see this today, with standards-based IP, where there is a very limited set of functionality that is configurable, or even no configurability at all.
Related Semiconductor IP
- 1.8V/3.3V I/O Library with 5V ODIO & Analog in TSMC 16nm
- ESD Solutions for Multi-Gigabit SerDes in TSMC 28nm
- High-Speed 3.3V I/O library with 8kV ESD Protection in TSPCo 65nm
- Verification IP for DisplayPort/eDP
- Wirebond Digital and Analog Library in TSMC 65nm
Related Blogs
- Navigating the challenges of manual IP design migrations
- World IP Day: A Time to Reflect on the Value of Semiconductor IP
- 3 things I learned visiting 13 different semiconductor analysts
- Semiconductor Memory Challenges Will Be Overcome, MemCon Keynoter Says
Latest Blogs
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms
- ReRAM-Powered Edge AI: A Game-Changer for Energy Efficiency, Cost, and Security