3 Challenges Of Delivering Configurable Semiconductor IP
Commercially useful IP is orders of magnitude more difficult to create than fixed-configuration IP.
Over time, commercial IP products have morphed from single function blocks to 100% configurable IPs where no two instances are the same. In this article I point out the challenges of creating configurable IP, and the best-known practices to address them.
IP Configurability Spectrum
Throughout the history of chip design, there has been a spectrum of configurability that has been built into internally developed and commercial semiconductor design IP. In the early days of chip design, sections of chip designs (i.e. IP blocks) were mostly fixed-function and therefore were not configurable. We still see this today, with standards-based IP, where there is a very limited set of functionality that is configurable, or even no configurability at all.
Related Semiconductor IP
- LPDDR6/5X/5 PHY V2 - Intel 18A-P
- ML-KEM Key Encapsulation & ML-DSA Digital Signature Engine
- MIPI SoundWire I3S Peripheral IP
- ML-DSA Digital Signature Engine
- P1619 / 802.1ae (MACSec) GCM/XTS/CBC-AES Core
Related Blogs
- Navigating the challenges of manual IP design migrations
- World IP Day: A Time to Reflect on the Value of Semiconductor IP
- The Blind Spot of Semiconductor IP Sales
- MIPI CSI3 Verification - Top 3 Challenges
Latest Blogs
- Rethinking Edge AI Interconnects: Why Multi-Protocol Is the New Standard
- Tidying Up: FIPS-Compliant Secure Zeroization for OTP
- Accelerating Your Development: Simplify SoC I/O with a Single Multi-Protocol SerDes IP
- Why What Where DIFI and the new version 1.3
- Accelerating PCIe Gen6 L0p Verification for AI & HPC Designs using Synopsys VIP