3 Challenges Of Delivering Configurable Semiconductor IP
Commercially useful IP is orders of magnitude more difficult to create than fixed-configuration IP.
Over time, commercial IP products have morphed from single function blocks to 100% configurable IPs where no two instances are the same. In this article I point out the challenges of creating configurable IP, and the best-known practices to address them.
IP Configurability Spectrum
Throughout the history of chip design, there has been a spectrum of configurability that has been built into internally developed and commercial semiconductor design IP. In the early days of chip design, sections of chip designs (i.e. IP blocks) were mostly fixed-function and therefore were not configurable. We still see this today, with standards-based IP, where there is a very limited set of functionality that is configurable, or even no configurability at all.
Related Semiconductor IP
- 1.8V/3.3V I/O library with ODIO and 5V HPD in TSMC 16nm
- 1.8V/3.3V I/O Library with ODIO and 5V HPD in TSMC 12nm
- 1.8V to 5V GPIO, 1.8V to 5V Analog in TSMC 180nm BCD
- 1.8V/3.3V GPIO Library with HDMI, Aanlog & LVDS Cells in TSMC 22nm
- Specialed 20V Analog I/O in TSMC 55nm
Related Blogs
- Navigating the challenges of manual IP design migrations
- World IP Day: A Time to Reflect on the Value of Semiconductor IP
- 3 things I learned visiting 13 different semiconductor analysts
- Semiconductor Memory Challenges Will Be Overcome, MemCon Keynoter Says
Latest Blogs
- Cadence Unveils the Industry’s First eUSB2V2 IP Solutions
- Half of the Compute Shipped to Top Hyperscalers in 2025 will be Arm-based
- Industry's First Verification IP for Display Port Automotive Extensions (DP AE)
- IMG DXT GPU: A Game-Changer for Gaming Smartphones
- Rivos and Canonical partner to deliver scalable RISC-V solutions in Data Centers and enable an enterprise-grade Ubuntu experience across Rivos platforms