Navigating the challenges of manual IP design migrations
In semiconductor design, the migration of IP across different technology nodes is a complex but business critical process. This task, traditionally manual, involves a detailed analysis of source and target technologies, migration of schematics and testbenches, and iterative design adjustments to meet specific performance requirements for the final design layout.
The challenges of manual migration
The manual process is intricate and lengthy, taking weeks to months, depending on the complexity of the circuit and IPs involved. Designers must deeply understand circuit behavior across Process, Voltage, and Temperature (PVT) corners, and engage in extensive simulations and iterations to achieve the desired specifications.
Additionally, the rate at which new technology nodes are introduced is accelerating, with each new node introducing more design rule complexity, leading to higher development costs and greater pressure on engineering resources due to the additional time needed to manage the migration process.
A shortage of skilled engineers further complicates the situation, not only extending design timelines and inflating costs due to the premium on expert talent, but also putting companies at risk of falling behind in the fiercely competitive race to secure fab capacity.
To read the full article, click here
Related Semiconductor IP
- Configurable CPU tailored precisely to your needs
- Ultra high-performance low-power ADC
- HiFi iQ DSP
- CXL 4 Verification IP
- JESD204E Controller IP
Related Blogs
- Can AI-Driven Chip Design Meet the Challenges of Tomorrow?
- Ethernet Evolution: Trends, Challenges, and the Future of Interoperability
- Analog Bits Steals the Show with Working IP on TSMC 3nm and 2nm and a New Design Strategy
- Maximizing the Usability of Your Chip Development: Design with Flexibility for the Future
Latest Blogs
- The Memory Imperative for Next-Generation AI Accelerator SoCs
- Leadership in CAN XL strengthens Bosch’s position in vehicle communication
- Validating UPLI Protocol Across Topologies with Cadence UALink VIP
- Cadence Tapes Out 32GT/s UCIe IP Subsystem on Samsung 4nm Technology
- LPDDR6 vs. LPDDR5 and LPDDR5X: What’s the Difference?