System on Chip (SoC)
A System on Chip (SoC) is an integrated circuit that consolidates an entire computer system onto a single chip. Unlike traditional desktop or laptop computers, where components such as the CPU, GPU, memory, storage, and I/O interfaces are separate and upgradeable, an SoC integrates all of these elements directly into silicon.
This integration makes SoCs compact, power-efficient, and highly optimized for their specific use case. However, since the components are fixed in hardware, the device cannot be upgraded in the same way as a conventional computer.
Where Are SoCs Used?
SoCs power a wide range of embedded electronic devices, from simple toys and calculators to advanced industrial robots and automobiles. Historically, SoCs were mostly found in low-power, cost-sensitive devices with limited performance requirements.
Today, advances in CPU, GPU, and memory technologies have transformed SoCs into the backbone of modern electronics. They are now essential in markets such as:
- Mobile Devices and Smartphones – SoCs enable high-performance, energy-efficient smartphones.
- Automotive Electronics – Powering infotainment, ADAS, and autonomous driving systems.
- Consumer Electronics and Entertainment – Smart TVs, gaming consoles, and streaming devices.
- IoT and Embedded Systems – Compact, low-power solutions for smart home devices and industrial sensors.
- Hobbyist Computers – Single-board computers like Raspberry Pi rely on SoC designs for performance and efficiency.
- Laptops and Ultraportables – Modern laptops increasingly adopt SoCs for high integration and low power consumption.
Custom vs Off-the-Shelf SoCs
While off-the-shelf SoCs provide a ready-made solution for many applications, differentiating a product often requires a custom SoC.
Designing a SoC internally from scratch is expensive, time-consuming, and technically demanding. This is why many companies turn to IP-based SoC development, leveraging pre-designed, verified intellectual property (IP) blocks to build a custom SoC. This approach allows companies to:
- Reduce development time – Use ready-made IP cores to accelerate SoC creation.
- Optimize power and performance – Tailor the design to the product’s specific requirements.
- Lower development risk – Avoid the cost and uncertainty of designing new technologies from scratch.
- Achieve product differentiation – Build unique features without a multi-year development cycle.
The Pulse
- Perceptia 正式启动将 pPLL03 移植至三星 14 纳米工艺
- VSORA与 创意电子 合作推出 Jotunn8 数据中心 AI 推理处理器
- M31亮相ICCAD 2025 以高效能與低功耗IP驅動AI晶片新世代
- 新思科技于英伟达GTC大会上重点展示Agentic AI、加速计算和AI物理技术
- 合见工软国产UCIe IP荣获第二十届“中国芯”优秀支撑服务产品奖项
- 赛昉科技重磅发布新产品,RISC-V实现数据中心规模化商用突破
- 芯原与谷歌联合推出开源Coral NPU IP
- 先进制程与权利金双引擎 2025全年营收维持20%成长目标
- CAST CAN IP内核客户突破200家
- SmartDV宣布其MIPI® SoundWire® I3S℠ 1.0 IP产品组合已向多家客户提供授权
- Perceptia 更新基于格芯(GlobalFoundries)22FDX工艺平台的 pPLL03 设计套件
- 〈M31法說〉先進製程與權利金雙引擎 2025全年營收維持20%成長目標
- Altera采用Arteris赋能云到边缘应用的智能计算
- 熵碼科技PUFrt技術助力Silicon Labs第三代無線SoC在全球率先通過 PSA Certified Level 4 認證
- SmartDV以领先的半导体设计IP与验证解决方案持续深耕亚洲市场