System on Chip (SoC)
A System on Chip (SoC) is an integrated circuit that consolidates an entire computer system onto a single chip. Unlike traditional desktop or laptop computers, where components such as the CPU, GPU, memory, storage, and I/O interfaces are separate and upgradeable, an SoC integrates all of these elements directly into silicon.
This integration makes SoCs compact, power-efficient, and highly optimized for their specific use case. However, since the components are fixed in hardware, the device cannot be upgraded in the same way as a conventional computer.
Where Are SoCs Used?
SoCs power a wide range of embedded electronic devices, from simple toys and calculators to advanced industrial robots and automobiles. Historically, SoCs were mostly found in low-power, cost-sensitive devices with limited performance requirements.
Today, advances in CPU, GPU, and memory technologies have transformed SoCs into the backbone of modern electronics. They are now essential in markets such as:
- Mobile Devices and Smartphones – SoCs enable high-performance, energy-efficient smartphones.
- Automotive Electronics – Powering infotainment, ADAS, and autonomous driving systems.
- Consumer Electronics and Entertainment – Smart TVs, gaming consoles, and streaming devices.
- IoT and Embedded Systems – Compact, low-power solutions for smart home devices and industrial sensors.
- Hobbyist Computers – Single-board computers like Raspberry Pi rely on SoC designs for performance and efficiency.
- Laptops and Ultraportables – Modern laptops increasingly adopt SoCs for high integration and low power consumption.
Custom vs Off-the-Shelf SoCs
While off-the-shelf SoCs provide a ready-made solution for many applications, differentiating a product often requires a custom SoC.
Designing a SoC internally from scratch is expensive, time-consuming, and technically demanding. This is why many companies turn to IP-based SoC development, leveraging pre-designed, verified intellectual property (IP) blocks to build a custom SoC. This approach allows companies to:
- Reduce development time – Use ready-made IP cores to accelerate SoC creation.
- Optimize power and performance – Tailor the design to the product’s specific requirements.
- Lower development risk – Avoid the cost and uncertainty of designing new technologies from scratch.
- Achieve product differentiation – Build unique features without a multi-year development cycle.
The Pulse
- CAST CAN IP内核客户突破200家
- SmartDV宣布其MIPI® SoundWire® I3S℠ 1.0 IP产品组合已向多家客户提供授权
- Perceptia 更新基于格芯(GlobalFoundries)22FDX工艺平台的 pPLL03 设计套件
- 〈M31法說〉先進製程與權利金雙引擎 2025全年營收維持20%成長目標
- Altera采用Arteris赋能云到边缘应用的智能计算
- 熵碼科技PUFrt技術助力Silicon Labs第三代無線SoC在全球率先通過 PSA Certified Level 4 認證
- SmartDV以领先的半导体设计IP与验证解决方案持续深耕亚洲市场
- Arteris与阿里巴巴达摩院深化合作,加速高性能RISC-V SoC设计
- Perceptia 基于格芯22FDX工艺的 pPLL08W初期性能测试报告正式发布
- 聯電推出55奈米BCD平台 提升行動裝置、消費性電子與汽車應用的電源效率
- ChipAgents完成超额认购的2100万美元A轮融资,致力于以全新方式重塑芯片设计中的人工智能应用
- GUC日本横滨新办公室盛大启用 持续深化在日布局与客户合作
- Quintauris 與晶心科技攜手合作,擴展 RISC-V 生態系統
- 积极拥抱RISC-V+AI,国芯科技高性能汽车智能域控 AI MCU芯片完成设计进入流片试制阶段
- 晶心科技與 Arculus System 攜手合作將 iPROfiler™ 整合進 AndeSysC 擴展虛擬平台支援助攻 RISC-V SoC 設計