System on Chip (SoC)
A System on Chip (SoC) is an integrated circuit that consolidates an entire computer system onto a single chip. Unlike traditional desktop or laptop computers, where components such as the CPU, GPU, memory, storage, and I/O interfaces are separate and upgradeable, an SoC integrates all of these elements directly into silicon.
This integration makes SoCs compact, power-efficient, and highly optimized for their specific use case. However, since the components are fixed in hardware, the device cannot be upgraded in the same way as a conventional computer.
Where Are SoCs Used?
SoCs power a wide range of embedded electronic devices, from simple toys and calculators to advanced industrial robots and automobiles. Historically, SoCs were mostly found in low-power, cost-sensitive devices with limited performance requirements.
Today, advances in CPU, GPU, and memory technologies have transformed SoCs into the backbone of modern electronics. They are now essential in markets such as:
- Mobile Devices and Smartphones – SoCs enable high-performance, energy-efficient smartphones.
- Automotive Electronics – Powering infotainment, ADAS, and autonomous driving systems.
- Consumer Electronics and Entertainment – Smart TVs, gaming consoles, and streaming devices.
- IoT and Embedded Systems – Compact, low-power solutions for smart home devices and industrial sensors.
- Hobbyist Computers – Single-board computers like Raspberry Pi rely on SoC designs for performance and efficiency.
- Laptops and Ultraportables – Modern laptops increasingly adopt SoCs for high integration and low power consumption.
Custom vs Off-the-Shelf SoCs
While off-the-shelf SoCs provide a ready-made solution for many applications, differentiating a product often requires a custom SoC.
Designing a SoC internally from scratch is expensive, time-consuming, and technically demanding. This is why many companies turn to IP-based SoC development, leveraging pre-designed, verified intellectual property (IP) blocks to build a custom SoC. This approach allows companies to:
- Reduce development time – Use ready-made IP cores to accelerate SoC creation.
- Optimize power and performance – Tailor the design to the product’s specific requirements.
- Lower development risk – Avoid the cost and uncertainty of designing new technologies from scratch.
- Achieve product differentiation – Build unique features without a multi-year development cycle.
The Pulse
- 最佳合作!Andes晶心科技×经纬恒润共筑RISC‑V软件生态
- 英伟达与新思科技宣布战略合作,携手重塑工程设计未来
- Quintauris 与 SiFive 宣布合作伙伴关系,共同推进 RISC-V 生态体系发展
- SiFive车规级RISC-V IP获IAR最新版嵌入式开发工具全面支持,加速汽车电子创新
- Andes晶心科技发布 D23-SE:支持 DCLS 与 Split-Lock 的 RISC-V 处理器,满足 ASIL-B/D 汽车功能安全应用需求
- d-Matrix 与Andes晶心科技携手打造全球性能最高、效率最佳的规模化 AI 推理加速器
- Perceptia 正式发布基于 GlobalFoundries 22FDX 的 10-bit 极低温 (Cryogenic)数/模(DAC)、模/数(ADC)转换器 IP
- 聯華電子與Polar攜手合作強化美國半導體在地製造能力
- 黑芝麻智能科技采用Arteris技术,助力新一代智驾芯片
- 智芯赋能,共筑生态——SmartDV亮相ICCAD-Expo 2025,助力中国集成电路产业高质量升级
- 芯原NPU IP VIP9000NanoOi-FS获ISO 26262 ASIL B认证
- Perceptia 正式启动将 pPLL03 移植至三星 14 纳米工艺
- VSORA与 创意电子 合作推出 Jotunn8 数据中心 AI 推理处理器
- M31亮相ICCAD 2025 以高效能與低功耗IP驅動AI晶片新世代
- 新思科技于英伟达GTC大会上重点展示Agentic AI、加速计算和AI物理技术