InAccel为FPGA推出开源逻辑回归IP核
July 8, 2019 -- Machine learning algorithms are extremely computationally intensive and time consuming when they must be trained on large amounts of data. Typical processors are not optimized for machine learning applications and therefore offer limited performance. Therefore, both academia an industry is focused on the development of specialized architectures for the efficient acceleration of machine learning applications.
FPGAs are programmable chips that can be configured with tailored-made architectures optimized for specific applications. As FPGAs are optimized for specific tasks, they offer higher performance and lower energy consumption compared with general purpose CPUs or GPUs. FPGAs are widely used in applications like image processing, telecommunications, networking, automotive and machine learning applications.
Recently major cloud and HPC providers like Amazon, Alibaba, Huawei and Nimbix have started deploying FPGAs in their data centers. However, currently there are limited cases of wide utilization of FPGAs in the domain of machine learning.
Towards this end, InAccel has released today as open-source the FPGA IP core for the training of logistic regression algorithms. The accelerated FPGA IP core offers up to 70x speedup compared to a single threaded execution and up to 12x compared to an 8-core general purpose CPU execution respectively.
The IP core for logistic regression leverage the processing power of the Xilinx FPGAs. The IP core is optimized for the Xilinx FPGAs like Alveo U200 and U250 cards and the FPGAs available as instances on the cloud providers (f1 on AWS and f3 on Alibaba cloud).
The release of the Logistic Regression IP core will help demonstrate the advantages of the FPGAs in the domain of machine learning and it will offer to the data science community the chance to experiment, deploy and utilize FPGAs in order to speedup their machine learning applications.
The IP core is available on https://github.com/inaccel/logisticregression
About InAccel
InAccel is specialized in developing high performance accelerators for machine learning, data analytics, data processing (compression, encryption) and financial applications. The accelerators from InAccel are compatible with high level distributed framework like Apache Spark. InAccel provides a unique FPGA resource manager that allows IP cores to be scaled instantly to many FPGAs and also allows the virtualization and the seamless sharing of the FPGA resources by many applications.
Related Semiconductor IP
- DDR5 MRDIMM PHY and Controller
- RVA23, Multi-cluster, Hypervisor and Android
- HBM4E PHY and controller
- 64 bit RISC-V Multicore Processor with 2048-bit VLEN and AMM
- NPU IP Core for Mobile
Related News
- Inaccel推出使用FPGA簇结构并实现超记录快速人脸识别检测方案
- System Level Solutions 的 USB 2.0 设备控制器 IP 核现可支持莱迪思半导体 FPGA 平台
- Grovf Inc. 推出用于智能 NIC 的低延迟 RDMA RoCE V2 FPGA IP 核
- T2M -IP 发布已通过硅验证的12位5Msps ADC IP,用于高速数据转换应用,现提供技术授权