Leveraging Virtual Platforms for Embedded Software Validation: Part 2
By Andy Ladd, Carbon Design Systems
Embedded.com (06/25/08, 04:16:00 PM EDT)
Embedded.com (06/25/08, 04:16:00 PM EDT)
Earlier in Part 1, we described the benefits of leveraging virtual platforms to validate architecture, performance and embedded software. In this second part, a case study is provided as a means to illustrate the concepts and benefits of using a well-modeled virtual platform of a simple system-on-chip (SoC) design.
The article will discuss how to effectively use interface and abstraction techniques, modeling tools, debugging techniques, and profiling to characterize and validate architectures and embedded software.
To read the full article, click here
Related Semiconductor IP
- Sine Wave Frequency Generator
- CAN XL Verification IP
- Rad-Hard GPIO, ODIO & LVDS in SkyWater 90nm
- 1.22V/1uA Reference voltage and current source
- 1.2V SLVS Transceiver in UMC 110nm
Related White Papers
- Leveraging virtual hardware platforms for embedded software validation
- Dealing with automotive software complexity with virtual prototyping - Part 3: Embedded software testing
- Processor-In-Loop Simulation: Embedded Software Verification & Validation In Model Based Development
- Fast virtual platforms open up multicore software development
Latest White Papers
- OmniSim: Simulating Hardware with C Speed and RTL Accuracy for High-Level Synthesis Designs
- Balancing Power and Performance With Task Dependencies in Multi-Core Systems
- LLM Inference with Codebook-based Q4X Quantization using the Llama.cpp Framework on RISC-V Vector CPUs
- PCIe 5.0: The universal high-speed interconnect for High Bandwidth and Low Latency Applications Design Challenges & Solutions
- Basilisk: A 34 mm2 End-to-End Open-Source 64-bit Linux-Capable RISC-V SoC in 130nm BiCMOS