Using SystemVerilog for functional verification
Tom Fitzpatrick, Mentor Graphics Design Verification & Test Division
(12/05/2005 9:00 AM EST)
EE Times
The need to improve functional verification productivity and quality continues to grow. The 2004/2002 IC/ASIC Functional Verification Study, by Collett International Research, shows that logic or functional errors are the leading cause of ASIC respins (Figure 1).
With 75 percent of respins caused by these errors, the need for a higher quality approach to verification has been clearly identified. Design and verification engineers face the question of how to move from their existing functional verification processes toward a more advanced functional verification methodology that includes automated testbench techniques such as assertions, constrained-random data generation, and functional coverage.
(12/05/2005 9:00 AM EST)
EE Times
The need to improve functional verification productivity and quality continues to grow. The 2004/2002 IC/ASIC Functional Verification Study, by Collett International Research, shows that logic or functional errors are the leading cause of ASIC respins (Figure 1).
With 75 percent of respins caused by these errors, the need for a higher quality approach to verification has been clearly identified. Design and verification engineers face the question of how to move from their existing functional verification processes toward a more advanced functional verification methodology that includes automated testbench techniques such as assertions, constrained-random data generation, and functional coverage.
To read the full article, click here
Related Semiconductor IP
- HBM4 PHY IP
- 10-bit SAR ADC - XFAB XT018
- eFuse Controller IP
- Secure Storage Solution for OTP IP
- Ultra-Low-Power LPDDR3/LPDDR2/DDR3L Combo Subsystem
Related Articles
- Modeling and Verification of Mixed Signal IP using SystemVerilog in Virtuoso and NCsim
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- Functional Finite State Machine Paths Coverage using SystemVerilog
- Targeting SoC address decoder faults using functional patterns
Latest Articles
- Making Strong Error-Correcting Codes Work Effectively for HBM in AI Inference
- Sensitivity-Aware Mixed-Precision Quantization for ReRAM-based Computing-in-Memory
- ElfCore: A 28nm Neural Processor Enabling Dynamic Structured Sparse Training and Online Self-Supervised Learning with Activity-Dependent Weight Update
- A 14ns-Latency 9Gb/s 0.44mm² 62pJ/b Short-Blocklength LDPC Decoder ASIC in 22FDX
- Pipeline Stage Resolved Timing Characterization of FPGA and ASIC Implementations of a RISC V Processor