Using SystemVerilog for functional verification
Tom Fitzpatrick, Mentor Graphics Design Verification & Test Division
(12/05/2005 9:00 AM EST)
EE Times
(12/05/2005 9:00 AM EST)
EE Times
The need to improve functional verification productivity and quality continues to grow. The 2004/2002 IC/ASIC Functional Verification Study, by Collett International Research, shows that logic or functional errors are the leading cause of ASIC respins (Figure 1).
With 75 percent of respins caused by these errors, the need for a higher quality approach to verification has been clearly identified. Design and verification engineers face the question of how to move from their existing functional verification processes toward a more advanced functional verification methodology that includes automated testbench techniques such as assertions, constrained-random data generation, and functional coverage.
To read the full article, click here
Related Semiconductor IP
- USB 4.0 V2 PHY - 4TX/2RX, TSMC N3P , North/South Poly Orientation
- FH-OFDM Modem
- NFC wireless interface supporting ISO14443 A and B with EEPROM on SMIC 180nm
- PQC CRYSTALS core for accelerating NIST FIPS 202 FIPS 203 and FIPS 204
- USB Full Speed Transceiver
Related White Papers
- Modeling and Verification of Mixed Signal IP using SystemVerilog in Virtuoso and NCsim
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models
- Functional Finite State Machine Paths Coverage using SystemVerilog
- Verification care abouts for SoC internal channel characterization using an ADC
Latest White Papers
- FastPath: A Hybrid Approach for Efficient Hardware Security Verification
- Automotive IP-Cores: Evolution and Future Perspectives
- TROJAN-GUARD: Hardware Trojans Detection Using GNN in RTL Designs
- How a Standardized Approach Can Accelerate Development of Safety and Security in Automotive Imaging Systems
- SV-LLM: An Agentic Approach for SoC Security Verification using Large Language Models